2 research outputs found

    The passive operating mode of the linear optical gesture sensor

    Full text link
    The study evaluates the influence of natural light conditions on the effectiveness of the linear optical gesture sensor, working in the presence of ambient light only (passive mode). The orientations of the device in reference to the light source were modified in order to verify the sensitivity of the sensor. A criterion for the differentiation between two states: "possible gesture" and "no gesture" was proposed. Additionally, different light conditions and possible features were investigated, relevant for the decision of switching between the passive and active modes of the device. The criterion was evaluated based on the specificity and sensitivity analysis of the binary ambient light condition classifier. The elaborated classifier predicts ambient light conditions with the accuracy of 85.15%. Understanding the light conditions, the hand pose can be detected. The achieved accuracy of the hand poses classifier trained on the data obtained in the passive mode in favorable light conditions was 98.76%. It was also shown that the passive operating mode of the linear gesture sensor reduces the total energy consumption by 93.34%, resulting in 0.132 mA. It was concluded that optical linear sensor could be efficiently used in various lighting conditions.Comment: 10 pages, 14 figure

    Touchless interaction for future mobile applications

    No full text
    We present a light-weight real-time applicable 3D-gesture recognition system on mobile devices for improved Human-Machine Interaction. We utilize time-of-flight data coming from a single sensor and implement the whole gesture recognition pipeline on two different devices outlining the potential of integrating these sensors onto mobile devices. The main components are responsible for cropping the data to the essentials, calculation of meaningful features, training and classifying via neural networks and realizing a GUI on the device. With our system we achieve recognition rates of up to 98% on a 10-gesture set with frame rates reaching 20Hz, more than sufficient for any real-time applications
    corecore