104,516 research outputs found
Total variation regularization for manifold-valued data
We consider total variation minimization for manifold valued data. We propose
a cyclic proximal point algorithm and a parallel proximal point algorithm to
minimize TV functionals with -type data terms in the manifold case.
These algorithms are based on iterative geodesic averaging which makes them
easily applicable to a large class of data manifolds. As an application, we
consider denoising images which take their values in a manifold. We apply our
algorithms to diffusion tensor images, interferometric SAR images as well as
sphere and cylinder valued images. For the class of Cartan-Hadamard manifolds
(which includes the data space in diffusion tensor imaging) we show the
convergence of the proposed TV minimizing algorithms to a global minimizer
Total variation regularization of multi-material topology optimization
This work is concerned with the determination of the diffusion coefficient
from distributed data of the state. This problem is related to homogenization
theory on the one hand and to regularization theory on the other hand. An
approach is proposed which involves total variation regularization combined
with a suitably chosen cost functional that promotes the diffusion coefficient
assuming prespecified values at each point of the domain. The main difficulty
lies in the delicate functional-analytic structure of the resulting
nondifferentiable optimization problem with pointwise constraints for functions
of bounded variation, which makes the derivation of useful pointwise optimality
conditions challenging. To cope with this difficulty, a novel reparametrization
technique is introduced. Numerical examples using a regularized semismooth
Newton method illustrate the structure of the obtained diffusion coefficient.
Image Reconstruction from Undersampled Confocal Microscopy Data using Multiresolution Based Maximum Entropy Regularization
We consider the problem of reconstructing 2D images from randomly
under-sampled confocal microscopy samples. The well known and widely celebrated
total variation regularization, which is the L1 norm of derivatives, turns out
to be unsuitable for this problem; it is unable to handle both noise and
under-sampling together. This issue is linked with the notion of phase
transition phenomenon observed in compressive sensing research, which is
essentially the break-down of total variation methods, when sampling density
gets lower than certain threshold. The severity of this breakdown is determined
by the so-called mutual incoherence between the derivative operators and
measurement operator. In our problem, the mutual incoherence is low, and hence
the total variation regularization gives serious artifacts in the presence of
noise even when the sampling density is not very low. There has been very few
attempts in developing regularization methods that perform better than total
variation regularization for this problem. We develop a multi-resolution based
regularization method that is adaptive to image structure. In our approach, the
desired reconstruction is formulated as a series of coarse-to-fine
multi-resolution reconstructions; for reconstruction at each level, the
regularization is constructed to be adaptive to the image structure, where the
information for adaption is obtained from the reconstruction obtained at
coarser resolution level. This adaptation is achieved by using maximum entropy
principle, where the required adaptive regularization is determined as the
maximizer of entropy subject to the information extracted from the coarse
reconstruction as constraints. We demonstrate the superiority of the proposed
regularization method over existing ones using several reconstruction examples
Finite element approximation of source term identification with TV-regularization
In this paper we investigate the problem of recovering the source term in an
elliptic system from a measurement of the state on a part of the boundary. For
the particular interest in reconstructing probably discontinuous sources, we
use the standard least squares method with the total variation regularization.
The finite element method is then applied to discretize the minimization
problem, we show the stability and the convergence of this technique.
Furthermore, we have proposed an algorithm to stably solve the minimization
problem. We prove the iterate sequence generated by the derived algorithm
converging to a minimizer of the regularization problem, and that convergence
measurement is also established. Finally, a numerical experiment is presented
to illustrate our theoretical findings.Comment: Inverse source problem, boundary observation, total variation
regularization, ill-posedness, finite element method, stability and
convergence, elliptic boundary value proble
- …
