268 research outputs found

    Total Correlation of Gaussian Vector Sources on the Gray–Wyner Network

    Get PDF
    We study a generalization of Wyner’s Common Information to Watanabe’s Total Correlation. The first minimizes the description size required for a variable that can make two other random variables conditionally independent. If independence is unattainable, Watanabe’s total (conditional) correlation is measure to check just how independent they have become. Following up on earlier work for scalar Gaussians, we discuss the minimization of total correlation for Gaussian vector sources. Using Gaussian auxiliaries, we show one should transform two vectors of length d into d independent pairs, after which a reverse water filling procedure distributes the minimization over all these pairs. Lastly, we show how this minimization of total conditional correlation fits a lossy coding problem by using the Gray–Wyner network as a model for a caching problem

    On the rate loss and construction of source codes for broadcast channels

    Get PDF
    In this paper, we first define and bound the rate loss of source codes for broadcast channels. Our broadcast channel model comprises one transmitter and two receivers; the transmitter is connected to each receiver by a private channel and to both receivers by a common channel. The transmitter sends a description of source (X, Y) through these channels, receiver 1 reconstructs X with distortion D1, and receiver 2 reconstructs Y with distortion D2. Suppose the rates of the common channel and private channels 1 and 2 are R0, R1, and R2, respectively. The work of Gray and Wyner gives a complete characterization of all achievable rate triples (R0,R1,R2) given any distortion pair (D1,D2). In this paper, we define the rate loss as the gap between the achievable region and the outer bound composed by the rate-distortion functions, i.e., R0+R1+R2 ≥ RX,Y (D1,D2), R0 + R1 ≥ RX(D1), and R0 + R2 ≥ RY (D2). We upper bound the rate loss for general sources by functions of distortions and upper bound the rate loss for Gaussian sources by constants, which implies that though the outer bound is generally not achievable, it may be quite close to the achievable region. This also bounds the gap between the achievable region and the inner bound proposed by Gray and Wyner and bounds the performance penalty associated with using separate decoders rather than joint decoders. We then construct such source codes using entropy-constrained dithered quantizers. The resulting implementation has low complexity and performance close to the theoretical optimum. In particular, the gap between its performance and the theoretical optimum can be bounded from above by constants for Gaussian sources

    Network vector quantization

    Get PDF
    We present an algorithm for designing locally optimal vector quantizers for general networks. We discuss the algorithm's implementation and compare the performance of the resulting "network vector quantizers" to traditional vector quantizers (VQs) and to rate-distortion (R-D) bounds where available. While some special cases of network codes (e.g., multiresolution (MR) and multiple description (MD) codes) have been studied in the literature, we here present a unifying approach that both includes these existing solutions as special cases and provides solutions to previously unsolved examples
    • …
    corecore