5 research outputs found

    Segmentation of Fluorescence Microscopy Cell Images Using Unsupervised Mining

    Get PDF
    The accurate measurement of cell and nuclei contours are critical for the sensitive and specific detection of changes in normal cells in several medical informatics disciplines. Within microscopy, this task is facilitated using fluorescence cell stains, and segmentation is often the first step in such approaches. Due to the complex nature of cell issues and problems inherent to microscopy, unsupervised mining approaches of clustering can be incorporated in the segmentation of cells. In this study, we have developed and evaluated the performance of multiple unsupervised data mining techniques in cell image segmentation. We adapt four distinctive, yet complementary, methods for unsupervised learning, including those based on k-means clustering, EM, Otsu’s threshold, and GMAC. Validation measures are defined, and the performance of the techniques is evaluated both quantitatively and qualitatively using synthetic and recently published real data. Experimental results demonstrate that k-means, Otsu’s threshold, and GMAC perform similarly, and have more precise segmentation results than EM. We report that EM has higher recall values and lower precision results from under-segmentation due to its Gaussian model assumption. We also demonstrate that these methods need spatial information to segment complex real cell images with a high degree of efficacy, as expected in many medical informatics applications

    Portfolio construction under information asymmetry

    Get PDF
    We introduce in this thesis the idea of a variable lookback model, i.e., a model whose predictions are based on a variable portion of the information set. We verify the intuition of this model in the context of experimental finance. We also propose a novel algorithm to estimate it, the variable lookback algorithm, and apply the latter to build investment strategies. Financial markets under information asymmetry are characterized by the presence of better-informed investors, also called insiders. The literature in finance has so far concentrated on theoretical models describing such markets, in particular on the role played by the price in conveying information from informed to uninformed investors. However, the implications of these theories have not yet been incorporated into processing methods to extract information from past prices and this is the aim of this thesis. More specifically, the presence of a time-varying number of insiders induces a time-varying predictability in the price process, which calls for models that use a variable lookback window. Moreover, although our initial motivation comes from the study of markets under information asymmetry, the problem is more general, as it touches several issues in statistical modeling. The first one concerns the structure of the model. Existing methods use a fixed model structure despite evidences from data, which support an adaptive one. The second one concerns the improper handling of the nonstationarity in data. The stationarity assumption facilitates the mathematical treatment. Hence, existing methods relies on some form of stationarity, for example, by assuming local stationary, as in the windowing approach, or by modeling the underlying switching process, for example, with a Markov chain of order 1. However, these suffer from certain limitations and more advanced methods that take explicitly into account the nonstationariry of the signal are desirable. In summary, there is a need to develop a method that constantly monitors what is the appropriate structure, when a certain model works and when not or when are the underlying assumptions of the model violated. We verify our initial intuition in the context of experimental finance. In particular, we highlight the diffusion of information in the market. We give a precise definition to the notion of the time of maximally informative price and verify, in line with existing theories, that the time of maximally informative price is inversely proportional to the number of insiders in the market. This supports the idea of a variable lookback model. Then, we develop an estimation algorithm that selects simultaneously the order of the process and the lookback window based on the minimum description length principle. The algorithm maintains a series of estimators, each based on a different order and/or information set. The selection is based on an information theoretic criterion, that accounts for the ability of the model to fit the data, penalized by the model complexity and the amount of switching between models. Finally, we put the algorithm at work and build investment strategies. We devise a method to draw dynamically the trend line for the time-series of log-prices and propose an adaptive version of the well-known momentum strategy. The latter outperforms standard benchmarks, in particular during the 2009 momentum crash

    Imaging studies of peripheral nerve regeneration induced by porous collagen biomaterials

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2013.Cataloged from PDF version of thesis.Includes bibliographical references.There is urgent need to develop treatments for inducing regeneration in injured organs. Porous collagen-based scaffolds have been utilized clinically to induce regeneration in skin and peripheral nerves, however still there is no complete explanation about the underlying mechanism. This thesis utilizes advanced microscopy to study the expression of contractile cell phenotypes during wound healing, a phenotype believed to affect significantly the final outcome. The first part develops an efficient pipeline for processing challenging spectral fluorescence microscopy images. Images are segmented into regions of objects by refining the outcome of a pixel-wide model selection classifier by an efficient Markov Random Field model. The methods of this part are utilized by the following parts. The second part extends the image informatics methodology in studying signal transduction networks in cells interacting with 3D matrices. The methodology is applied in a pilot study of TGFP signal transduction by the SMAD pathway in fibroblasts seeded in porous collagen scaffolds. Preliminary analysis suggests that the differential effect of TGFP1 and TGFP3 to cells could be attributed to the "non-canonical" SMADI and SMAD5. The third part is an ex vivo imaging study of peripheral nerve regeneration, which focuses on the formation of a capsule of contractile cells around transected rat sciatic nerves grafted with collagen scaffolds, 1 or 2 weeks post-injury. It follows a recent study that highlights an inverse relationship between the quality of the newly formed nerve tissue and the size of the contractile cell capsule 9 weeks post-injury. Results suggest that "active" biomaterials result in significantly thinner capsule already 1 week post-injury. The fourth part describes a novel method for quantifying the surface chemistry of 3D matrices. The method is an in situ binding assay that utilizes fluorescently labeled recombinant proteins that emulate the receptor of , and is applied to quantify the density of ligands for integrins a113, a2p1 on the surface of porous collagen scaffolds. Results provide estimates for the density of ligands on "active" and "inactive" scaffolds and demonstrate that chemical crosslinking can affect the surface chemistry of biomaterials, therefore can affect the way cells sense and respond to the material.by Dimitrios S. Tzeranis.Ph. D
    corecore