5,698 research outputs found

    Epidemic Spreading with External Agents

    Full text link
    We study epidemic spreading processes in large networks, when the spread is assisted by a small number of external agents: infection sources with bounded spreading power, but whose movement is unrestricted vis-\`a-vis the underlying network topology. For networks which are `spatially constrained', we show that the spread of infection can be significantly speeded up even by a few such external agents infecting randomly. Moreover, for general networks, we derive upper-bounds on the order of the spreading time achieved by certain simple (random/greedy) external-spreading policies. Conversely, for certain common classes of networks such as line graphs, grids and random geometric graphs, we also derive lower bounds on the order of the spreading time over all (potentially network-state aware and adversarial) external-spreading policies; these adversarial lower bounds match (up to logarithmic factors) the spreading time achieved by an external agent with a random spreading policy. This demonstrates that random, state-oblivious infection-spreading by an external agent is in fact order-wise optimal for spreading in such spatially constrained networks

    Distributed convergence to Nash equilibria in two-network zero-sum games

    Full text link
    This paper considers a class of strategic scenarios in which two networks of agents have opposing objectives with regards to the optimization of a common objective function. In the resulting zero-sum game, individual agents collaborate with neighbors in their respective network and have only partial knowledge of the state of the agents in the other network. For the case when the interaction topology of each network is undirected, we synthesize a distributed saddle-point strategy and establish its convergence to the Nash equilibrium for the class of strictly concave-convex and locally Lipschitz objective functions. We also show that this dynamics does not converge in general if the topologies are directed. This justifies the introduction, in the directed case, of a generalization of this distributed dynamics which we show converges to the Nash equilibrium for the class of strictly concave-convex differentiable functions with locally Lipschitz gradients. The technical approach combines tools from algebraic graph theory, nonsmooth analysis, set-valued dynamical systems, and game theory

    Maximizing Algebraic Connectivity of Constrained Graphs in Adversarial Environments

    Full text link
    This paper aims to maximize algebraic connectivity of networks via topology design under the presence of constraints and an adversary. We are concerned with three problems. First, we formulate the concave maximization topology design problem of adding edges to an initial graph, which introduces a nonconvex binary decision variable, in addition to subjugation to general convex constraints on the feasible edge set. Unlike previous methods, our method is justifiably not greedy and capable of accommodating these additional constraints. We also study a scenario in which a coordinator must selectively protect edges of the network from a chance of failure due to a physical disturbance or adversarial attack. The coordinator needs to strategically respond to the adversary's action without presupposed knowledge of the adversary's feasible attack actions. We propose three heuristic algorithms for the coordinator to accomplish the objective and identify worst-case preventive solutions. Each algorithm is shown to be effective in simulation and we provide some discussion on their compared performance.Comment: 8 pages, submitted to European Control Conference 201
    • …
    corecore