38,242 research outputs found

    Matroidal approaches to rough sets via closure operators

    Get PDF
    AbstractThis paper studies rough sets from the operator-oriented view by matroidal approaches. We firstly investigate some kinds of closure operators and conclude that the Pawlak upper approximation operator is just a topological and matroidal closure operator. Then we characterize the Pawlak upper approximation operator in terms of the closure operator in Pawlak matroids, which are first defined in this paper, and are generalized to fundamental matroids when partitions are generalized to coverings. A new covering-based rough set model is then proposed based on fundamental matroids and properties of this model are studied. Lastly, we refer to the abstract approximation space, whose original definition is modified to get a one-to-one correspondence between closure systems (operators) and concrete models of abstract approximation spaces. We finally examine the relations of four kinds of abstract approximation spaces, which correspond exactly to the relations of closure systems

    The Bing-Borsuk and the Busemann Conjectures

    Get PDF
    We present two classical conjectures concerning the characterization of manifolds: the Bing Borsuk Conjecture asserts that every nn-dimensional homogeneous ANR is a topological nn-manifold, whereas the Busemann Conjecture asserts that every nn-dimensional GG-space is a topological nn-manifold. The key object in both cases are so-called {\it generalized manifolds}, i.e. ENR homology manifolds. We look at the history, from the early beginnings to the present day. We also list several open problems and related conjectures.Comment: We have corrected three small typos on pages 8 and

    Generalized Sums over Histories for Quantum Gravity I. Smooth Conifolds

    Get PDF
    This paper proposes to generalize the histories included in Euclidean functional integrals from manifolds to a more general set of compact topological spaces. This new set of spaces, called conifolds, includes nonmanifold stationary points that arise naturally in a semiclasssical evaluation of such integrals; additionally, it can be proven that sequences of approximately Einstein manifolds and sequences of approximately Einstein conifolds both converge to Einstein conifolds. Consequently, generalized Euclidean functional integrals based on these conifold histories yield semiclassical amplitudes for sequences of both manifold and conifold histories that approach a stationary point of the Einstein action. Therefore sums over conifold histories provide a useful and self-consistent starting point for further study of topological effects in quantum gravity. Postscript figures available via anonymous ftp at black-hole.physics.ubc.ca (137.82.43.40) in file gen1.ps.Comment: 81pp., plain TeX, To appear in Nucl. Phys.

    Covering rough sets based on neighborhoods: An approach without using neighborhoods

    Get PDF
    Rough set theory, a mathematical tool to deal with inexact or uncertain knowledge in information systems, has originally described the indiscernibility of elements by equivalence relations. Covering rough sets are a natural extension of classical rough sets by relaxing the partitions arising from equivalence relations to coverings. Recently, some topological concepts such as neighborhood have been applied to covering rough sets. In this paper, we further investigate the covering rough sets based on neighborhoods by approximation operations. We show that the upper approximation based on neighborhoods can be defined equivalently without using neighborhoods. To analyze the coverings themselves, we introduce unary and composition operations on coverings. A notion of homomorphismis provided to relate two covering approximation spaces. We also examine the properties of approximations preserved by the operations and homomorphisms, respectively.Comment: 13 pages; to appear in International Journal of Approximate Reasonin

    Approximation results for a general class of Kantorovich type operators

    Full text link
    We introduce and study a family of integral operators in the Kantorovich sense for functions acting on locally compact topological groups. We obtain convergence results for the above operators with respect to the pointwise and uniform convergence and in the setting of Orlicz spaces with respect to the modular convergence. Moreover, we show how our theory applies to several classes of integral and discrete operators, as the sampling, convolution and Mellin type operators in the Kantorovich sense, thus obtaining a simultaneous approach for discrete and integral operators. Further, we derive our general convergence results for particular cases of Orlicz spaces, as LpL^p-spaces, interpolation spaces and exponential spaces. Finally we construct some concrete example of our operators and we show some graphical representations.Comment: 23 pages, 5 figure

    The Generalized Hartle-Hawking Initial State: Quantum Field Theory on Einstein Conifolds

    Get PDF
    Recent arguments have indicated that the sum over histories formulation of quantum amplitudes for gravity should include sums over conifolds, a set of histories with more general topology than that of manifolds. This paper addresses the consequences of conifold histories in gravitational functional integrals that also include scalar fields. This study will be carried out explicitly for the generalized Hartle-Hawking initial state, that is the Hartle-Hawking initial state generalized to a sum over conifolds. In the perturbative limit of the semiclassical approximation to the generalized Hartle-Hawking state, one finds that quantum field theory on Einstein conifolds is recovered. In particular, the quantum field theory of a scalar field on de Sitter spacetime with RP3RP^3 spatial topology is derived from the generalized Hartle-Hawking initial state in this approximation. This derivation is carried out for a scalar field of arbitrary mass and scalar curvature coupling. Additionally, the generalized Hartle-Hawking boundary condition produces a state that is not identical to but corresponds to the Bunch-Davies vacuum on RP3RP^3 de Sitter spacetime. This result cannot be obtained from the original Hartle-Hawking state formulated as a sum over manifolds as there is no Einstein manifold with round RP3RP^3 boundary.Comment: Revtex 3, 31 pages, 4 epsf figure
    corecore