135 research outputs found

    Topological evaluation of volume reconstructions by voxel carving

    Get PDF
    Space or voxel carving [1, 4, 10, 15] is a technique for creating a three-dimensional reconstruction of an object from a series of two-dimensional images captured from cameras placed around the object at different viewing angles. However, little work has been done to date on evaluating the quality of space carving results. This paper extends the work reported in [8], where application of persistent homology was initially proposed as a tool for providing a topological analysis of the carving process along the sequence of 3D reconstructions with increasing number of cameras. We give now a more extensive treatment by: (1) developing the formal framework by which persistent homology can be applied in this context; (2) computing persistent homology of the 3D reconstructions of 66 new frames, including different poses, resolutions and camera orders; (3) studying what information about stability, topological correctness and influence of the camera orders in the carving performance can be drawn from the computed barcodes

    Persistent homology for 3D reconstruction evaluation

    Get PDF
    Space or voxel carving is a non-invasive technique that is used to produce a 3D volume and can be used in particular for the reconstruction of a 3D human model from images captured from a set of cameras placed around the subject. In [1], the authors present a technique to quantitatively evaluate spatially carved volumetric representations of humans using a synthetic dataset of typical sports motion in a tennis court scenario, with regard to the number of cameras used. In this paper, we compute persistent homology over the sequence of chain complexes obtained from the 3D outcomes with increasing number of cameras. This allows us to analyze the topological evolution of the reconstruction process, something which as far as we are aware has not been investigated to date

    Designing a topological algorithm for 3D activity recognition

    Get PDF
    Voxel carving is a non-invasive and low-cost technique that is used for the reconstruction of a 3D volume from images captured from a set of cameras placed around the object of interest. In this paper we propose a method to topologically analyze a video sequence of 3D reconstructions representing a tennis player performing different forehand and backhand strokes with the aim of providing an approach that could be useful in other sport activities

    From small to large baseline multiview stereo : dealing with blur, clutter and occlusions

    Get PDF
    This thesis addresses the problem of reconstructing the three-dimensional (3D) digital model of a scene from a collection of two-dimensional (2D) images taken from it. To address this fundamental computer vision problem, we propose three algorithms. They are the main contributions of this thesis. First, we solve multiview stereo with the o -axis aperture camera. This system has a very small baseline as images are captured from viewpoints close to each other. The key idea is to change the size or the 3D location of the aperture of the camera so as to extract selected portions of the scene. Our imaging model takes both defocus and stereo information into account and allows to solve shape reconstruction and image restoration in one go. The o -axis aperture camera can be used in a small-scale space where the camera motion is constrained by the surrounding environment, such as in 3D endoscopy. Second, to solve multiview stereo with large baseline, we present a framework that poses the problem of recovering a 3D surface in the scene as a regularized minimal partition problem of a visibility function. The formulation is convex and hence guarantees that the solution converges to the global minimum. Our formulation is robust to view-varying extensive occlusions, clutter and image noise. At any stage during the estimation process the method does not rely on the visual hull, 2D silhouettes, approximate depth maps, or knowing which views are dependent(i.e., overlapping) and which are independent( i.e., non overlapping). Furthermore, the degenerate solution, the null surface, is not included as a global solution in this formulation. One limitation of this algorithm is that its computation complexity grows with the number of views that we combine simultaneously. To address this limitation, we propose a third formulation. In this formulation, the visibility functions are integrated within a narrow band around the estimated surface by setting weights to each point along optical rays. This thesis presents technical descriptions for each algorithm and detailed analyses to show how these algorithms improve existing reconstruction techniques

    Large-Scale Automatic Reconstruction of Neuronal Processes from Electron Microscopy Images

    Full text link
    Automated sample preparation and electron microscopy enables acquisition of very large image data sets. These technical advances are of special importance to the field of neuroanatomy, as 3D reconstructions of neuronal processes at the nm scale can provide new insight into the fine grained structure of the brain. Segmentation of large-scale electron microscopy data is the main bottleneck in the analysis of these data sets. In this paper we present a pipeline that provides state-of-the art reconstruction performance while scaling to data sets in the GB-TB range. First, we train a random forest classifier on interactive sparse user annotations. The classifier output is combined with an anisotropic smoothing prior in a Conditional Random Field framework to generate multiple segmentation hypotheses per image. These segmentations are then combined into geometrically consistent 3D objects by segmentation fusion. We provide qualitative and quantitative evaluation of the automatic segmentation and demonstrate large-scale 3D reconstructions of neuronal processes from a 27,000\mathbf{27,000} μm3\mathbf{\mu m^3} volume of brain tissue over a cube of 30  μm\mathbf{30 \; \mu m} in each dimension corresponding to 1000 consecutive image sections. We also introduce Mojo, a proofreading tool including semi-automated correction of merge errors based on sparse user scribbles

    Approaches to three-dimensional reconstruction of plant shoot topology and geometry

    Get PDF
    There are currently 805 million people classified as chronically undernourished, and yet the World’s population is still increasing. At the same time, global warming is causing more frequent and severe flooding and drought, thus destroying crops and reducing the amount of land available for agriculture. Recent studies show that without crop climate adaption, crop productivity will deteriorate. With access to 3D models of real plants it is possible to acquire detailed morphological and gross developmental data that can be used to study their ecophysiology, leading to an increase in crop yield and stability across hostile and changing environments. Here we review approaches to the reconstruction of 3D models of plant shoots from image data, consider current applications in plant and crop science, and identify remaining challenges. We conclude that although phenotyping is receiving an increasing amount of attention – particularly from computer vision researchers – and numerous vision approaches have been proposed, it still remains a highly interactive process. An automated system capable of producing 3D models of plants would significantly aid phenotyping practice, increasing accuracy and repeatability of measurements

    Multiview stereo via volumetric graph-cuts and occlusion robust photo-consistency

    Get PDF
    This paper presents a volumetric formulation for the multiview stereo problem which is amenable to a computationally tractable global optimization using Graph-cuts. Our approach is to seek the optimal partitioning of 3D space into two regions labeled as "object" and "empty" under a cost functional consisting of the following two terms: 1) A term that forces the boundary between the two regions to pass through photo-consistent locations; and 2) a ballooning term that inflates the "object" region. To take account of the effect of occlusion on the first term, we use an occlusion robust photo-consistency metric based on normalized cross correlation, which does not assume any geometric knowledge about the reconstructed object. The globally optimal 3D partitioning can be obtained as the minimum cut solution of a weighted graph
    corecore