8 research outputs found

    Combinatorial generation via permutation languages

    Get PDF
    In this work we present a general and versatile algorithmic framework for exhaustively generating a large variety of different combinatorial objects, based on encoding them as permutations. This approach provides a unified view on many known results and allows us to prove many new ones. In particular, we obtain the following four classical Gray codes as special cases: the Steinhaus-Johnson-Trotter algorithm to generate all permutations of an nn-element set by adjacent transpositions; the binary reflected Gray code to generate all nn-bit strings by flipping a single bit in each step; the Gray code for generating all nn-vertex binary trees by rotations due to Lucas, van Baronaigien, and Ruskey; the Gray code for generating all partitions of an nn-element ground set by element exchanges due to Kaye. We present two distinct applications for our new framework: The first main application is the generation of pattern-avoiding permutations, yielding new Gray codes for different families of permutations that are characterized by the avoidance of certain classical patterns, (bi)vincular patterns, barred patterns, Bruhat-restricted patterns, mesh patterns, monotone and geometric grid classes, and many others. We thus also obtain new Gray code algorithms for the combinatorial objects that are in bijection to these permutations, in particular for five different types of geometric rectangulations, also known as floorplans, which are divisions of a square into nn rectangles subject to certain restrictions. The second main application of our framework are lattice congruences of the weak order on the symmetric group~SnS_n. Recently, Pilaud and Santos realized all those lattice congruences as (n1)(n-1)-dimensional polytopes, called quotientopes, which generalize hypercubes, associahedra, permutahedra etc. Our algorithm generates the equivalence classes of each of those lattice congruences, by producing a Hamilton path on the skeleton of the corresponding quotientope, yielding a constructive proof that each of these highly symmetric graphs is Hamiltonian. We thus also obtain a provable notion of optimality for the Gray codes obtained from our framework: They translate into walks along the edges of a polytope

    Drawings of Complete Multipartite Graphs up to Triangle Flips

    Get PDF
    For a drawing of a labeled graph, the rotation of a vertex or crossing is the cyclic order of its incident edges, represented by the labels of their other endpoints. The extended rotation system (ERS) of the drawing is the collection of the rotations of all vertices and crossings. A drawing is simple if each pair of edges has at most one common point. Gioan's Theorem states that for any two simple drawings of the complete graph Kn with the same crossing edge pairs, one drawing can be transformed into the other by a sequence of triangle flips (a.k.a. Reidemeister moves of Type 3). This operation refers to the act of moving one edge of a triangular cell formed by three pairwise crossing edges over the opposite crossing of the cell, via a local transformation. We investigate to what extent Gioan-type theorems can be obtained for wider classes of graphs. A necessary (but in general not sufficient) condition for two drawings of a graph to be transformable into each other by a sequence of triangle flips is that they have the same ERS. As our main result, we show that for the large class of complete multipartite graphs, this necessary condition is in fact also sufficient. We present two different proofs of this result, one of which is shorter, while the other one yields a polynomial time algorithm for which the number of needed triangle flips for graphs on n vertices is bounded by O(n16). The latter proof uses a Carathéodory-type theorem for simple drawings of complete multipartite graphs, which we believe to be of independent interest. Moreover, we show that our Gioan-type theorem for complete multipartite graphs is essentially tight in the following sense: For the complete bipartite graph Km, n minus two edges and Km, n plus one edge for any m, n ≥ 4, as well as Kn minus a 4-cycle for any n ≥ 5, there exist two simple drawings with the same ERS that cannot be transformed into each other using triangle flips. So having the same ERS does not remain sufficient when removing or adding very few edges

    Crossing-Optimal Extension of Simple Drawings

    Get PDF
    In extension problems of partial graph drawings one is given an incomplete drawing of an input graph G and is asked to complete the drawing while maintaining certain properties. A prominent area where such problems arise is that of crossing minimization. For plane drawings and various relaxations of these, there is a number of tractability as well as lower-bound results exploring the computational complexity of crossing-sensitive drawing extension problems. In contrast, comparatively few results are known on extension problems for the fundamental and broad class of simple drawings, that is, drawings in which each pair of edges intersects in at most one point. In fact, the extension problem of simple drawings has only recently been shown to be NP-hard even for inserting a single edge. In this paper we present tractability results for the crossing-sensitive extension problem of simple drawings. In particular, we show that the problem of inserting edges into a simple drawing is fixed-parameter tractable when parameterized by the number of edges to insert and an upper bound on newly created crossings. Using the same proof techniques, we are also able to answer several closely related variants of this problem, among others the extension problem for k-plane drawings. Moreover, using a different approach, we provide a single-exponential fixed-parameter algorithm for the case in which we are only trying to insert a single edge into the drawing

    Different Types of Isomorphisms of Drawings of Complete Multipartite Graphs

    Full text link
    Simple drawings are drawings of graphs in which any two edges intersect at most once (either at a common endpoint or a proper crossing), and no edge intersects itself. We analyze several characteristics of simple drawings of complete multipartite graphs: which pairs of edges cross, in which order they cross, and the cyclic order around vertices and crossings, respectively. We consider all possible combinations of how two drawings can share some characteristics and determine which other characteristics they imply and which they do not imply. Our main results are that for simple drawings of complete multipartite graphs, the orders in which edges cross determine all other considered characteristics. Further, if all partition classes have at least three vertices, then the pairs of edges that cross determine the rotation system and the rotation around the crossings determine the extended rotation system. We also show that most other implications -- including the ones that hold for complete graphs -- do not hold for complete multipartite graphs. Using this analysis, we establish which types of isomorphisms are meaningful for simple drawings of complete multipartite graphs.Comment: Appears in the Proceedings of the 31st International Symposium on Graph Drawing and Network Visualization (GD 2023

    Combinatorial generation via permutation languages. I. Fundamentals

    Get PDF
    In this work we present a general and versatile algorithmic framework for exhaustively generating a large variety of different combinatorial objects, based on encoding them as permutations. This approach provides a unified view on many known results and allows us to prove many new ones. In particular, we obtain the following four classical Gray codes as special cases: the Steinhaus-Johnson-Trotter algorithm to generate all permutations of an nn-element set by adjacent transpositions; the binary reflected Gray code to generate all nn-bit strings by flipping a single bit in each step; the Gray code for generating all nn-vertex binary trees by rotations due to Lucas, van Baronaigien, and Ruskey; the Gray code for generating all partitions of an nn-element ground set by element exchanges due to Kaye. We present two distinct applications for our new framework: The first main application is the generation of pattern-avoiding permutations, yielding new Gray codes for different families of permutations that are characterized by the avoidance of certain classical patterns, (bi)vincular patterns, barred patterns, boxed patterns, Bruhat-restricted patterns, mesh patterns, monotone and geometric grid classes, and many others. We also obtain new Gray codes for all the combinatorial objects that are in bijection to these permutations, in particular for five different types of geometric rectangulations, also known as floorplans, which are divisions of a square into nn rectangles subject to certain restrictions. The second main application of our framework are lattice congruences of the weak order on the symmetric group~SnS_n. Recently, Pilaud and Santos realized all those lattice congruences as (n1)(n-1)-dimensional polytopes, called quotientopes, which generalize hypercubes, associahedra, permutahedra etc. Our algorithm generates the equivalence classes of each of those lattice congruences, by producing a Hamilton path on the skeleton of the corresponding quotientope, yielding a constructive proof that each of these highly symmetric graphs is Hamiltonian. We thus also obtain a provable notion of optimality for the Gray codes obtained from our framework: They translate into walks along the edges of a polytope

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    Topological drawings of complete bipartite graphs

    No full text
    Topological drawings are natural representations of graphs in the plane, where vertices are represented by points, and edges by curves connecting the points. We consider a natural class of simple topological drawings of complete bipartite graphs, in which we require that one side of the vertex set bipartition lies on the outer boundary of the drawing. We investigate the combinatorics of such drawings. For this purpose, we define combinatorial encodings of the drawings by enumerating the distinct drawings of subgraphs isomorphic to K2,2 and K3,2, and investigate the constraints they must satisfy. We prove in particular that for complete bipartite graphs of the form K2,n and K3,n, such an encoding corresponds to a drawing if and only if it obeys consistency conditions on triples and quadruples. In the general case of Kk,n with k ≥ 2, we completely characterize and enumerate drawings in which the order of the edges around each vertex is the same for vertices on the same side of the bipartition.SCOPUS: cp.kinfo:eu-repo/semantics/publishe
    corecore