7,286 research outputs found

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Geometry of polycrystals and microstructure

    Full text link
    We investigate the geometry of polycrystals, showing that for polycrystals formed of convex grains the interior grains are polyhedral, while for polycrystals with general grain geometry the set of triple points is small. Then we investigate possible martensitic morphologies resulting from intergrain contact. For cubic-to-tetragonal transformations we show that homogeneous zero-energy microstructures matching a pure dilatation on a grain boundary necessarily involve more than four deformation gradients. We discuss the relevance of this result for observations of microstructures involving second and third-order laminates in various materials. Finally we consider the more specialized situation of bicrystals formed from materials having two martensitic energy wells (such as for orthorhombic to monoclinic transformations), but without any restrictions on the possible microstructure, showing how a generalization of the Hadamard jump condition can be applied at the intergrain boundary to show that a pure phase in either grain is impossible at minimum energy.Comment: ESOMAT 2015 Proceedings, to appea

    From Multiview Image Curves to 3D Drawings

    Full text link
    Reconstructing 3D scenes from multiple views has made impressive strides in recent years, chiefly by correlating isolated feature points, intensity patterns, or curvilinear structures. In the general setting - without controlled acquisition, abundant texture, curves and surfaces following specific models or limiting scene complexity - most methods produce unorganized point clouds, meshes, or voxel representations, with some exceptions producing unorganized clouds of 3D curve fragments. Ideally, many applications require structured representations of curves, surfaces and their spatial relationships. This paper presents a step in this direction by formulating an approach that combines 2D image curves into a collection of 3D curves, with topological connectivity between them represented as a 3D graph. This results in a 3D drawing, which is complementary to surface representations in the same sense as a 3D scaffold complements a tent taut over it. We evaluate our results against truth on synthetic and real datasets.Comment: Expanded ECCV 2016 version with tweaked figures and including an overview of the supplementary material available at multiview-3d-drawing.sourceforge.ne

    A Sketch-Based Interface for Annotation of 3D Brain Vascular Reconstructions

    Get PDF
    Within the medical imaging community, 3D models of anatomical structures are now widely used in order to establish more accurate diagnoses than those based on 2D images. Many research works focus on an automatic process to build such 3D models. However automatic reconstruction induces many artifacts if the anatomical structure exhibits tortuous and thin parts (such as vascular networks) and the correction of these artifacts involves 3D-modeling skills and times that radiologists do not have. This article presents a semi-automatic approach to build a correct topology of vascular networks from 3D medical images. The user interface is based on sketching; user strokes both defines a command and the part of geometry where the command is applied to. Moreover the user-gesture speed is taken into account to adjust the command: a slow and precise gesture will correct a local part of the topology while a fast gesture will correct a larger part of the topology. Our system relies on an automatic segmentation that provides a initial guess that the user can interactively modify using the proposed set of commands. This allows to correct the anatomical aberrations or ambiguities that appear on the segmented model in a few strokes.Dans le domaine de l'imagerie médicale, la modélisation 3D de structures anatomiques est maintenant largement utilisée dans l'optique d'é}tablir des diagnostics plus précis qu'avec des données basées sur des images 2D. Aujourd'hui, de nombreux travaux mettent l'accent sur les méthodes automatique de reconstruction de modèles 3D mais ces méthodes induisent de nombreuses erreurs. Avec une structure anatomique (réseau cérébral) présente des parties assez fines et tortueuses, des erreurs sont introduites, cela nécessitent de la correction du modèle 3D, mais aussi des compétences et des heures que les radiologistes ne possèdent pas. Cet article présente une approche semi-automatique de reconstruction d'une topologie correcte de réseaux vasculaires issus d'images médicales en 3D. Notre système repose sur une segmentation automatique qui fournit une estimation initiale dont l'utilisateur peut modifier interactivement en utilisant un jeu proposé de commandes basées sur le croquis. Cela permet de corriger les aberrations anatomiques ou les ambiguïtés qui apparaissent sur le modèle segmenté en quelques traits

    Data-driven shape analysis and processing

    Get PDF
    Data-driven methods serve an increasingly important role in discovering geometric, structural, and semantic relationships between shapes. In contrast to traditional approaches that process shapes in isolation of each other, data-driven methods aggregate information from 3D model collections to improve the analysis, modeling and editing of shapes. Through reviewing the literature, we provide an overview of the main concepts and components of these methods, as well as discuss their application to classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing
    • …
    corecore