7,124 research outputs found

    Relation Structure moléculaire - Odeur Utilisation des Réseaux de Neurones pour l’estimation de l’Odeur Balsamique

    Get PDF
    Les molécules odorantes (parfums ou flaveurs) sont utilisées dans une grande variété de produits de consommation, pour inciter les consommateurs à associer les impressions favorables à un produit donné. La Relation Structure moléculaire-Odeur (SOR) est cruciale pour la synthèse de ces molécules mais est très difficile à établir due à la subjectivité de l’odeur. Ce travail présente une approche de prédiction de l'odeur des molécules basée sur les descripteurs moléculaires. Les techniques d’analyse en composantes principales (PCA) et de d’analyse de colinéarité permettent d’identifier les descripteurs les plus pertinents. un réseau de neurones supervisé5 à deux couches (cachée et sortie) est employé pour corréler la structure moléculaire à l’odeur. La base de données décrite précédemment est utilisée pour l’apprentissage. Un ensemble de paramètres est modifié jusqu’à la satisfaction de la meilleure régression. Les résultats obtenus sont encouragent, ainsi les descripteurs moléculaires convenables corrèlent efficacement l'odeur des molécules. C’est la première étape d’un modèle générique en développement pour corréler l'odeur avec les structures moléculaire

    Evolutionary Neural Gas (ENG): A Model of Self Organizing Network from Input Categorization

    Full text link
    Despite their claimed biological plausibility, most self organizing networks have strict topological constraints and consequently they cannot take into account a wide range of external stimuli. Furthermore their evolution is conditioned by deterministic laws which often are not correlated with the structural parameters and the global status of the network, as it should happen in a real biological system. In nature the environmental inputs are noise affected and fuzzy. Which thing sets the problem to investigate the possibility of emergent behaviour in a not strictly constrained net and subjected to different inputs. It is here presented a new model of Evolutionary Neural Gas (ENG) with any topological constraints, trained by probabilistic laws depending on the local distortion errors and the network dimension. The network is considered as a population of nodes that coexist in an ecosystem sharing local and global resources. Those particular features allow the network to quickly adapt to the environment, according to its dimensions. The ENG model analysis shows that the net evolves as a scale-free graph, and justifies in a deeply physical sense- the term gas here used.Comment: 16 pages, 8 figure

    Perspective: network-guided pattern formation of neural dynamics

    Full text link
    The understanding of neural activity patterns is fundamentally linked to an understanding of how the brain's network architecture shapes dynamical processes. Established approaches rely mostly on deviations of a given network from certain classes of random graphs. Hypotheses about the supposed role of prominent topological features (for instance, the roles of modularity, network motifs, or hierarchical network organization) are derived from these deviations. An alternative strategy could be to study deviations of network architectures from regular graphs (rings, lattices) and consider the implications of such deviations for self-organized dynamic patterns on the network. Following this strategy, we draw on the theory of spatiotemporal pattern formation and propose a novel perspective for analyzing dynamics on networks, by evaluating how the self-organized dynamics are confined by network architecture to a small set of permissible collective states. In particular, we discuss the role of prominent topological features of brain connectivity, such as hubs, modules and hierarchy, in shaping activity patterns. We illustrate the notion of network-guided pattern formation with numerical simulations and outline how it can facilitate the understanding of neural dynamics

    Principled Multilayer Network Embedding

    Full text link
    Multilayer network analysis has become a vital tool for understanding different relationships and their interactions in a complex system, where each layer in a multilayer network depicts the topological structure of a group of nodes corresponding to a particular relationship. The interactions among different layers imply how the interplay of different relations on the topology of each layer. For a single-layer network, network embedding methods have been proposed to project the nodes in a network into a continuous vector space with a relatively small number of dimensions, where the space embeds the social representations among nodes. These algorithms have been proved to have a better performance on a variety of regular graph analysis tasks, such as link prediction, or multi-label classification. In this paper, by extending a standard graph mining into multilayer network, we have proposed three methods ("network aggregation," "results aggregation" and "layer co-analysis") to project a multilayer network into a continuous vector space. From the evaluation, we have proved that comparing with regular link prediction methods, "layer co-analysis" achieved the best performance on most of the datasets, while "network aggregation" and "results aggregation" also have better performance than regular link prediction methods
    • …
    corecore