1,009 research outputs found

    Precise Semidefinite Programming Formulation of Atomic Norm Minimization for Recovering d-Dimensional (d≥2d\geq 2) Off-the-Grid Frequencies

    Full text link
    Recent research in off-the-grid compressed sensing (CS) has demonstrated that, under certain conditions, one can successfully recover a spectrally sparse signal from a few time-domain samples even though the dictionary is continuous. In particular, atomic norm minimization was proposed in \cite{tang2012csotg} to recover 11-dimensional spectrally sparse signal. However, in spite of existing research efforts \cite{chi2013compressive}, it was still an open problem how to formulate an equivalent positive semidefinite program for atomic norm minimization in recovering signals with dd-dimensional (d≥2d\geq 2) off-the-grid frequencies. In this paper, we settle this problem by proposing equivalent semidefinite programming formulations of atomic norm minimization to recover signals with dd-dimensional (d≥2d\geq 2) off-the-grid frequencies.Comment: 4 pages, double-column,1 Figur

    Super-resolution Line Spectrum Estimation with Block Priors

    Full text link
    We address the problem of super-resolution line spectrum estimation of an undersampled signal with block prior information. The component frequencies of the signal are assumed to take arbitrary continuous values in known frequency blocks. We formulate a general semidefinite program to recover these continuous-valued frequencies using theories of positive trigonometric polynomials. The proposed semidefinite program achieves super-resolution frequency recovery by taking advantage of known structures of frequency blocks. Numerical experiments show great performance enhancements using our method.Comment: 7 pages, double colum

    Structure-Based Bayesian Sparse Reconstruction

    Full text link
    Sparse signal reconstruction algorithms have attracted research attention due to their wide applications in various fields. In this paper, we present a simple Bayesian approach that utilizes the sparsity constraint and a priori statistical information (Gaussian or otherwise) to obtain near optimal estimates. In addition, we make use of the rich structure of the sensing matrix encountered in many signal processing applications to develop a fast sparse recovery algorithm. The computational complexity of the proposed algorithm is relatively low compared with the widely used convex relaxation methods as well as greedy matching pursuit techniques, especially at a low sparsity rate.Comment: 29 pages, 15 figures, accepted in IEEE Transactions on Signal Processing (July 2012
    • …
    corecore