16,797 research outputs found

    ElasTraS: An Elastic Transactional Data Store in the Cloud

    Full text link
    Over the last couple of years, "Cloud Computing" or "Elastic Computing" has emerged as a compelling and successful paradigm for internet scale computing. One of the major contributing factors to this success is the elasticity of resources. In spite of the elasticity provided by the infrastructure and the scalable design of the applications, the elephant (or the underlying database), which drives most of these web-based applications, is not very elastic and scalable, and hence limits scalability. In this paper, we propose ElasTraS which addresses this issue of scalability and elasticity of the data store in a cloud computing environment to leverage from the elastic nature of the underlying infrastructure, while providing scalable transactional data access. This paper aims at providing the design of a system in progress, highlighting the major design choices, analyzing the different guarantees provided by the system, and identifying several important challenges for the research community striving for computing in the cloud.Comment: 5 Pages, In Proc. of USENIX HotCloud 200

    Deadline Constrained Cloud Computing Resources Scheduling through an Ant Colony System Approach

    Get PDF
    Cloud computing resources scheduling is essential for executing workflows in the cloud platform because it relates to both execution time and execution cost. In this paper, we adopt a model that optimizes the execution cost while meeting deadline constraints. In solving this problem, we propose an Improved Ant Colony System (IACS) approach featuring two novel strategies. Firstly, a dynamic heuristic strategy is used to calculate a heuristic value during an evolutionary process by taking the workflow topological structure into consideration. Secondly, a double search strategy is used to initialize the pheromone and calculate the heuristic value according to the execution time at the beginning and to initialize the pheromone and calculate heuristic value according to the execution cost after a feasible solution is found. Therefore, the proposed IACS is adaptive to the search environment and to different objectives. We have conducted extensive experiments based on workflows with different scales and different cloud resources. We compare the result with a particle swarm optimization (PSO) approach and a dynamic objective genetic algorithm (DOGA) approach. Experimental results show that IACS is able to find better solutions with a lower cost than both PSO and DOGA do on various scheduling scales and deadline conditions

    ElfStore: A Resilient Data Storage Service for Federated Edge and Fog Resources

    Full text link
    Edge and fog computing have grown popular as IoT deployments become wide-spread. While application composition and scheduling on such resources are being explored, there exists a gap in a distributed data storage service on the edge and fog layer, instead depending solely on the cloud for data persistence. Such a service should reliably store and manage data on fog and edge devices, even in the presence of failures, and offer transparent discovery and access to data for use by edge computing applications. Here, we present Elfstore, a first-of-its-kind edge-local federated store for streams of data blocks. It uses reliable fog devices as a super-peer overlay to monitor the edge resources, offers federated metadata indexing using Bloom filters, locates data within 2-hops, and maintains approximate global statistics about the reliability and storage capacity of edges. Edges host the actual data blocks, and we use a unique differential replication scheme to select edges on which to replicate blocks, to guarantee a minimum reliability and to balance storage utilization. Our experiments on two IoT virtual deployments with 20 and 272 devices show that ElfStore has low overheads, is bound only by the network bandwidth, has scalable performance, and offers tunable resilience.Comment: 24 pages, 14 figures, To appear in IEEE International Conference on Web Services (ICWS), Milan, Italy, 201

    Decision Support Tools for Cloud Migration in the Enterprise

    Full text link
    This paper describes two tools that aim to support decision making during the migration of IT systems to the cloud. The first is a modeling tool that produces cost estimates of using public IaaS clouds. The tool enables IT architects to model their applications, data and infrastructure requirements in addition to their computational resource usage patterns. The tool can be used to compare the cost of different cloud providers, deployment options and usage scenarios. The second tool is a spreadsheet that outlines the benefits and risks of using IaaS clouds from an enterprise perspective; this tool provides a starting point for risk assessment. Two case studies were used to evaluate the tools. The tools were useful as they informed decision makers about the costs, benefits and risks of using the cloud.Comment: To appear in IEEE CLOUD 201

    Analysis of cloud storage prices

    Get PDF
    Cloud storage is fast securing its role as a major repository for both consumers and business customers. Many companies now offer storage solutions, sometimes for free for limited amounts of capacity. We have surveyed the pricing plans of a selection of major cloud providers and compared them using the unit price as the means of comparison. All the providers, excepting Amazon, adopt a bundling pricing scheme; Amazon follows instead a block-declining pricing policy. We compare the pricing plans through a double approach: a pointwise comparison for each value of capacity, and an overall comparison using a two-part tariff approximation and a Pareto-dominance criterion. Under both approaches, most providers appear to offer pricing plans that are more expensive and can be excluded from a procurement selection in favour of a limited number of dominant providers.Comment: 17 pages, 17 figures, 17 reference
    • …
    corecore