17 research outputs found

    To Join or Not to Join? Thinking Twice about Joins before Feature Selection

    No full text
    Closer integration of machine learning (ML) with data processing is a booming area in both the data management industry and academia. Almost all ML toolkits assume that the input is a single table, but many datasets are not stored as single tables due to normalization. Thus, analysts often perform key-foreign key joins to obtain features from all base tables and apply a feature selection method, either explicitly or implicitly, with the aim of improving accuracy. In this work, we show that the features brought in by such joins can often be ignored without affecting ML accuracy significantly, i.e., we can "avoid joins safely". We identify the core technical issue that could cause accuracy to decrease in some cases and analyze this issue theoretically. Using simulations, we validate our analysis and measure the effects of various properties of normalized data on accuracy. We apply our analysis to design easy-to-understand decision rules to predict when it is safe to avoid joins in order to help analysts exploit this runtime-accuracy tradeoff. Experiments with multiple real normalized datasets show that our rules are able to accurately predict when joins can be avoided safely, and in some cases, this led to significant reductions in the runtime of some popular feature selection methods

    Boosting gets full Attention for Relational Learning

    Full text link
    More often than not in benchmark supervised ML, tabular data is flat, i.e. consists of a single m×dm \times d (rows, columns) file, but cases abound in the real world where observations are described by a set of tables with structural relationships. Neural nets-based deep models are a classical fit to incorporate general topological dependence among description features (pixels, words, etc.), but their suboptimality to tree-based models on tabular data is still well documented. In this paper, we introduce an attention mechanism for structured data that blends well with tree-based models in the training context of (gradient) boosting. Each aggregated model is a tree whose training involves two steps: first, simple tabular models are learned descending tables in a top-down fashion with boosting's class residuals on tables' features. Second, what has been learned progresses back bottom-up via attention and aggregation mechanisms, progressively crafting new features that complete at the end the set of observation features over which a single tree is learned, boosting's iteration clock is incremented and new class residuals are computed. Experiments on simulated and real-world domains display the competitiveness of our method against a state of the art containing both tree-based and neural nets-based models

    A Relational Gradient Descent Algorithm For Support Vector Machine Training

    Full text link
    We consider gradient descent like algorithms for Support Vector Machine (SVM) training when the data is in relational form. The gradient of the SVM objective can not be efficiently computed by known techniques as it suffers from the ``subtraction problem''. We first show that the subtraction problem can not be surmounted by showing that computing any constant approximation of the gradient of the SVM objective function is #P\#P-hard, even for acyclic joins. We, however, circumvent the subtraction problem by restricting our attention to stable instances, which intuitively are instances where a nearly optimal solution remains nearly optimal if the points are perturbed slightly. We give an efficient algorithm that computes a ``pseudo-gradient'' that guarantees convergence for stable instances at a rate comparable to that achieved by using the actual gradient. We believe that our results suggest that this sort of stability the analysis would likely yield useful insight in the context of designing algorithms on relational data for other learning problems in which the subtraction problem arises

    BlinkML: Efficient Maximum Likelihood Estimation with Probabilistic Guarantees

    Full text link
    The rising volume of datasets has made training machine learning (ML) models a major computational cost in the enterprise. Given the iterative nature of model and parameter tuning, many analysts use a small sample of their entire data during their initial stage of analysis to make quick decisions (e.g., what features or hyperparameters to use) and use the entire dataset only in later stages (i.e., when they have converged to a specific model). This sampling, however, is performed in an ad-hoc fashion. Most practitioners cannot precisely capture the effect of sampling on the quality of their model, and eventually on their decision-making process during the tuning phase. Moreover, without systematic support for sampling operators, many optimizations and reuse opportunities are lost. In this paper, we introduce BlinkML, a system for fast, quality-guaranteed ML training. BlinkML allows users to make error-computation tradeoffs: instead of training a model on their full data (i.e., full model), BlinkML can quickly train an approximate model with quality guarantees using a sample. The quality guarantees ensure that, with high probability, the approximate model makes the same predictions as the full model. BlinkML currently supports any ML model that relies on maximum likelihood estimation (MLE), which includes Generalized Linear Models (e.g., linear regression, logistic regression, max entropy classifier, Poisson regression) as well as PPCA (Probabilistic Principal Component Analysis). Our experiments show that BlinkML can speed up the training of large-scale ML tasks by 6.26x-629x while guaranteeing the same predictions, with 95% probability, as the full model.Comment: 22 pages, SIGMOD 201
    corecore