14,995 research outputs found

    The Role of Nonlinear Dynamics in Quantitative Atomic Force Microscopy

    Full text link
    Various methods of force measurement with the Atomic Force Microscope (AFM) are compared for their ability to accurately determine the tip-surface force from analysis of the nonlinear cantilever motion. It is explained how intermodulation, or the frequency mixing of multiple drive tones by the nonlinear tip-surface force, can be used to concentrate the nonlinear motion in a narrow band of frequency near the cantilevers fundamental resonance, where accuracy and sensitivity of force measurement are greatest. Two different methods for reconstructing tip-surface forces from intermodulation spectra are explained. The reconstruction of both conservative and dissipative tip-surface interactions from intermodulation spectra are demonstrated on simulated data.Comment: 25 pages (preprint, double space) 7 figure

    Tip Reconstruction for the Atomic Force Microscope

    Full text link

    Tungsten tip and atomic site tomography

    Get PDF
    Atomic electron tomography aims to precisely locate individual atoms of a nanoparticle in three-dimensional space. In this work, a tomography method based on tungsten tips is developed to allow images to be taken over a full angular range by placing a nanoparticle on the apex of an etched tungsten tip. There is no interference of signal from supporting materials with the suspended nanoparticle. A new reconstruction algorithm, atomic site tomography, is developed using the principle of regularisation in multiple linear regression. This algorithm is specifically designed for identifying the precise locations of individual atoms in three-dimensional space, and the algorithm is validated by an experimental dataset. A gold nanoparticle dataset is successfully obtained by tungsten tip tomography, and the dataset is processed to remove scanning artefacts. Selected region of the gold nanoparticle dataset is used to demonstrate the new reconstruction algorithm and the whole gold nanoparticle is then reconstructed. A tuning fork atomic force microscope is developed to provide a more flexible method to prepare samples for tungsten tip tomography and its progress is reported. This work contributes to the field of atomic electron tomography by improving the experimental techniques for acquiring high-quality tomography dataset and proposing a new reconstruction algorithm which aims at locating individual atoms of nanoparticles precisely

    Interaction imaging with amplitude-dependence force spectroscopy

    Full text link
    Knowledge of surface forces is the key to understanding a large number of processes in fields ranging from physics to material science and biology. The most common method to study surfaces is dynamic atomic force microscopy (AFM). Dynamic AFM has been enormously successful in imaging surface topography, even to atomic resolution, but the force between the AFM tip and the surface remains unknown during imaging. Here, we present a new approach that combines high accuracy force measurements and high resolution scanning. The method, called amplitude-dependence force spectroscopy (ADFS) is based on the amplitude-dependence of the cantilever's response near resonance and allows for separate determination of both conservative and dissipative tip-surface interactions. We use ADFS to quantitatively study and map the nano-mechanical interaction between the AFM tip and heterogeneous polymer surfaces. ADFS is compatible with commercial atomic force microscopes and we anticipate its wide-spread use in taking AFM toward quantitative microscopy

    Imaging of atomic orbitals with the Atomic Force Microscope - experiments and simulations

    Get PDF
    Atomic force microscopy (AFM) is a mechanical profiling technique that allows to image surfaces with atomic resolution. Recent progress in reducing the noise of this technique has led to a resolution level where previously undetectable symmetries of the images of single atoms are observed. These symmetries are related to the nature of the interatomic forces. The Si(111)-(7x7) surface is studied by AFM with various tips and AFM images are simulated with chemical and electrostatic model forces. The calculation of images from the tip-sample forces is explained in detail and the implications of the imaging parameters are discussed. Because the structure of the Si(111)-(7x7) surface is known very well, the shape of the adatom images is used to determine the tip structure. The observability of atomic orbitals by AFM and scanning tunneling microscopy is discussed.Comment: 21 pages, 17 figure

    The magnetic-resonance force microscope: a new tool for high-resolution, 3-D, subsurface scanned probe imaging

    Get PDF
    The magnetic-resonance force microscope (MRFM) is a novel scanned probe instrument which combines the three-dimensional (3-D) imaging capabilities of magnetic-resonance imaging with the high sensitivity and resolution of atomic-force microscopy. It will enable nondestructive, chemical-specific, high-resolution microscopic studies and imaging of subsurface properties of a broad range of materials. The MRFM has demonstrated its utility for study of microscopic ferromagnets, and it will enable microscopic understanding of the nonequilibrium spin polarization resulting from spin injection. Microscopic MRFM studies will provide unprecedented insight into the physics of magnetic and spin-based materials. We will describe the principles and the state-of-the-art in magnetic-resonance force microscopy, discuss existing cryogenic MRFM instruments incorporating high-Q, single-crystal microresonators with integral submicrometer probe magnets, and indicate future directions for enhancing MRFM instrument capabilities
    • …
    corecore