277 research outputs found

    AADLib, A Library of Reusable AADL Models

    Get PDF
    The SAE Architecture Analysis and Design Language is now a well-established language for the description of critical embedded systems, but also cyber-physical ones. A wide range of analysis tools is already available, either as part of the OSATE tool chain, or separate ones. A key missing elements of AADL is a set of reusable building blocks to help learning AADL concepts, but also experiment already existing tool chains on validated real-life examples. In this paper, we present AADLib, a library of reusable model elements. AADLib is build on two pillars: 1/ a set of ready-to- use examples so that practitioners can learn more about the AADL language itself, but also experiment with existing tools. Each example comes with a full description of available analysis and expected results. This helps reducing the learning curve of the language. 2/ a set of reusable model elements that cover typical building blocks of critical systems: processors, networks, devices with a high level of fidelity so that the cost to start a new project is reduced. AADLib is distributed under a Free/Open Source License to further disseminate the AADL language. As such, AADLib provides a convenient way to discover AADL concepts and tool chains, and learn about its features

    QuantUM: Quantitative Safety Analysis of UML Models

    Full text link
    When developing a safety-critical system it is essential to obtain an assessment of different design alternatives. In particular, an early safety assessment of the architectural design of a system is desirable. In spite of the plethora of available formal quantitative analysis methods it is still difficult for software and system architects to integrate these techniques into their every day work. This is mainly due to the lack of methods that can be directly applied to architecture level models, for instance given as UML diagrams. Also, it is necessary that the description methods used do not require a profound knowledge of formal methods. Our approach bridges this gap and improves the integration of quantitative safety analysis methods into the development process. All inputs of the analysis are specified at the level of a UML model. This model is then automatically translated into the analysis model, and the results of the analysis are consequently represented on the level of the UML model. Thus the analysis model and the formal methods used during the analysis are hidden from the user. We illustrate the usefulness of our approach using an industrial strength case study.Comment: In Proceedings QAPL 2011, arXiv:1107.074

    Towards MARTE++ : an enhanced UML-based language to Model and Analyse Real-Time and Embedded Systems for the IoT age

    Get PDF
    This paper presents requirements for an enhanced version of the UML Profile for MARTE, the current standard of the OMG for the modelling and analysis of real-time embedded systems. Since its adoption by the OMG in 2009 and after the various additions along recent years, MARTE has been essayed in a number of application domains and validation approaches. This paper makes a review of these various efforts describing extensions, additional functionality, and modeling needs that may serve as inputs for the preparation of a formal request for proposals (RFP) at the OMG. Aspects that have been found useful to have in it include modern platforms like Multi-core, Many-core and GPUs, networking for broader domains like the Internet of Things, federation of all modelling artifacts involved in the development process, including tracing mechanisms embedded in the language to link design and run-time artifacts, and more elaborated kinds of quantitative analyses and extra functional properties, like energy and memory consumption, heat dissipation, and temperature distribution. Also methodological aspects like its specification as a profile and/or as a meta-model will need to be discussed. Finally, the standard needs to be reviewed against the new executable UML related specifications; particularly to be in alignment with those semantics of state machines and composite structures.This work receives funding from the Spanish Government under grant number TIN2014-56158-C4-2-P (M2C2), and from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No 737494 (MegaM@RT2). This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and Sweden, France, Spain, Italy, Finland, Czech Republic. We thank the anonymous reviewers for their insights and proposals of improvement

    Contract Aware Components, 10 years after

    Get PDF
    The notion of contract aware components has been published roughly ten years ago and is now becoming mainstream in several fields where the usage of software components is seen as critical. The goal of this paper is to survey domains such as Embedded Systems or Service Oriented Architecture where the notion of contract aware components has been influential. For each of these domains we briefly describe what has been done with this idea and we discuss the remaining challenges.Comment: In Proceedings WCSI 2010, arXiv:1010.233

    Early timing analysis based on scenario requirements and platform models

    Get PDF
    Distributed, software-intensive systems (e.g., in the automotive sector) must fulfill communication requirements under hard real-time constraints. The requirements have to be documented and validated carefully using a systematic requirements engineering (RE) approach, for example, by applying scenario-based requirements notations. The resources of the execution platforms and their properties (e.g., CPU frequency or bus throughput) induce effects on the timing behavior, which may lead to violations of the real-time requirements. Nowadays, the platform properties and their induced timing effects are verified against the real-time requirements by means of timing analysis techniques mostly implemented in commercial-off-the-shelf tools. However, such timing analyses are conducted in late development phases since they rely on artifacts produced during these phases (e.g., the platform-specific code). In order to enable early timing analyses already during RE, we extend a scenario-based requirements notation with allocation means to platform models and define operational semantics for the purpose of simulation-based, platform-aware timing analyses. We illustrate and evaluate the approach with an automotive software-intensive system
    • …
    corecore