24 research outputs found

    Discrete Simulation of Behavioural Hybrid Process Calculus

    Get PDF
    Hybrid systems combine continuous-time and discrete behaviours. Simulation is one of the tools to obtain insight in dynamical systems behaviour. Simulation results provide information on performance of system and are helpful in detecting potential weaknesses and errors. Moreover, the results are handy in choosing adequate control strategies and parameters. In our contribution we report a work in progress, a technique for simulation of Behavioural Hybrid Process Calculus, an extension of process algebra that is suitable for the modelling and analysis of hybrid systems

    Model-based Testing

    Get PDF
    This paper provides a comprehensive introduction to a framework for formal testing using labelled transition systems, based on an extension and reformulation of the ioco theory introduced by Tretmans. We introduce the underlying models needed to specify the requirements, and formalise the notion of test cases. We discuss conformance, and in particular the conformance relation ioco. For this relation we prove several interesting properties, and we provide algorithms to derive test cases (either in batches, or on the fly)

    Testing real-time multi input-output systems

    Get PDF
    In formal testing, the assumption of input enabling is typically made. This assumption requires all inputs to be enabled anytime. In addition, the useful concept of quiescence is sometimes applied. Briefly, a system is in a quiescent state when it cannot produce outputs. In this paper, we relax the input enabling assumption, and allow some input sets to be enabled while others remain disabled. Moreover, we also relax the general bound M used in timed systems to detect quiescence, and allow different bounds for different sets of outputs. By considering the tioco-M theory, an enriched theory for timed testing with repetitive quiescence, and allowing the partition of input sets and output sets, we introduce the mtioco^M relation. A test derivation procedure which is nondeterministic and parameterized is further developed, and shown to be sound and complete wrt mtioco^

    Testing multi input-output real-time systems (Extended version)

    Get PDF
    In formal testing, the assumption of input enabling is typically made. This assumption requires all inputs to be enabled anytime. In addition, the useful concept of quiescence is sometimes applied. Briefly, a system is in a quiescent state when it cannot produce outputs. In this paper, we relax the input enabling assumption, and allow some input sets to be enabled while others remain disabled. Moreover, we also relax the general bound M used in timed systems to detect quiescence, and allow different bounds for different sets of outputs. By considering the tiocoM theory, an enriched theory for timed testing with repetitive quiescence, and allowing the partition of input sets and output sets, we introduce the mtiocoM relation. A test derivation procedure which is nondeterministic and parameterized is further developed, and shown to be sound and complete wrt mtiocoM

    Model-Based Testing of Safety Critical Real-Time Control Logic Software

    Full text link
    The paper presents the experience of the authors in model based testing of safety critical real-time control logic software. It describes specifics of the corresponding industrial settings and discusses technical details of usage of UniTESK model based testing technology in these settings. Finally, we discuss possible future directions of safety critical software development processes and a place of model based testing techniques in it.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Quantitative testing

    Get PDF
    We investigate the problem of specification based testing with dense sets of inputs and outputs, in particular with imprecision as they might occur due to errors in measurements, numerical instability or noisy channels. Using quantitative transition systems to describe implementations and specifications, we introduce implementation relations that capture a notion of correctness ā€œup to Īµā€, allowing deviations of implementation from the specification of at most Īµ. These quantitative implementation relations are described as Hausdorff distances between certain sets of traces. They are conservative extensions of the well-known ioco relation. We develop an on-line and an off-line algorithm to generate test cases from a requirement specification, modeled as a quantitative transition system. Both algorithms are shown to be sound and complete with respect to the quantitative implementation relations introduced

    Model-Based Testing for General Stochastic Time

    Get PDF
    corecore