35 research outputs found

    検索頻度推定のためのWikipediaページビューデータの分析

    Get PDF
    ウェブ検索エンジンに入力されるクエリの検索頻度は人々の興味関心を反映しており,流行の分析などに有用なデータである。しかし,その検索頻度データを検索エンジン事業者以外が利用することは困難である。そこで本論文では,検索結果の上位に表示される傾向のあるWikipediaのページビューデータを用いれば検索頻度を推定できると仮定し,その推定可能性を検証する。The frequency of a web search query generally reflects the degree of people\u27s interest in the subject matter. Search logs are therefore a useful resource for trend analysis. However, accessing search logs is typically restricted to search engine providers. In this paper, we investigate whether search frequency can be estimated from another resource, namely, Wikipedia page view of open data. As a result, frequently searched queries revealed remarkably high correlations against Wikipedia page view. This fact suggests that Wikipedia page view is effective for understanding popular web search trends happening around the world

    Intent Models for Contextualising and Diversifying Query Suggestions

    Full text link
    The query suggestion or auto-completion mechanisms help users to type less while interacting with a search engine. A basic approach that ranks suggestions according to their frequency in the query logs is suboptimal. Firstly, many candidate queries with the same prefix can be removed as redundant. Secondly, the suggestions can also be personalised based on the user's context. These two directions to improve the aforementioned mechanisms' quality can be in opposition: while the latter aims to promote suggestions that address search intents that a user is likely to have, the former aims to diversify the suggestions to cover as many intents as possible. We introduce a contextualisation framework that utilises a short-term context using the user's behaviour within the current search session, such as the previous query, the documents examined, and the candidate query suggestions that the user has discarded. This short-term context is used to contextualise and diversify the ranking of query suggestions, by modelling the user's information need as a mixture of intent-specific user models. The evaluation is performed offline on a set of approximately 1.0M test user sessions. Our results suggest that the proposed approach significantly improves query suggestions compared to the baseline approach.Comment: A short version of this paper was presented at CIKM 201

    Temporal Feedback for Tweet Search with Non-Parametric Density Estimation

    Get PDF
    This paper investigates the temporal cluster hypothesis: in search tasks where time plays an important role, do relevant documents tend to cluster together in time? We explore this question in the context of tweet search and temporal feedback: starting with an initial set of results from a baseline retrieval model, we estimate the temporal density of relevant documents, which is then used for result reranking. Our contributions lie in a method to characterize this temporal density function using kernel density estimation, with and without human relevance judgments, and an approach to integrating this information into a standard retrieval model. Experiments on TREC datasets confirm that our temporal feedback formulation improves search effectiveness, thus providing support for our hypothesis. Our approach outperforms both a standard baseline and previous temporal retrieval models. Temporal feedback improves over standard lexical feedback (with and without human judgments), illustrating that temporal relevance signals exist independently of document content

    Fast Data in the Era of Big Data: Twitter's Real-Time Related Query Suggestion Architecture

    Full text link
    We present the architecture behind Twitter's real-time related query suggestion and spelling correction service. Although these tasks have received much attention in the web search literature, the Twitter context introduces a real-time "twist": after significant breaking news events, we aim to provide relevant results within minutes. This paper provides a case study illustrating the challenges of real-time data processing in the era of "big data". We tell the story of how our system was built twice: our first implementation was built on a typical Hadoop-based analytics stack, but was later replaced because it did not meet the latency requirements necessary to generate meaningful real-time results. The second implementation, which is the system deployed in production, is a custom in-memory processing engine specifically designed for the task. This experience taught us that the current typical usage of Hadoop as a "big data" platform, while great for experimentation, is not well suited to low-latency processing, and points the way to future work on data analytics platforms that can handle "big" as well as "fast" data
    corecore