203,974 research outputs found

    Gaussian Two-way Relay Channel with Private Information for the Relay

    Full text link
    We introduce a generalized two-way relay channel where two sources exchange information (not necessarily of the same rate) with help from a relay, and each source additionally sends private information to the relay. We consider the Gaussian setting where all point-to-point links are Gaussian channels. For this channel, we consider a two-phase protocol consisting of a multiple access channel (MAC) phase and a broadcast channel (BC) phase. We propose a general decode-and-forward (DF) scheme where the MAC phase is related to computation over MAC, while the BC phase is related to BC with receiver side information. In the MAC phase, we time share a capacity-achieving code for the MAC and a superposition code with a lattice code as its component code. We show that the proposed DF scheme is near optimal for any channel conditions, in that it achieves rates within half bit of the capacity region of the two-phase protocol.Comment: 6 pages, 3 figures, accepted for publication in IEEE Transactions on Communication

    Sub-channel Assignment, Power Allocation and User Scheduling for Non-Orthogonal Multiple Access Networks

    Full text link
    In this paper, we study the resource allocation and user scheduling problem for a downlink nonorthogonal multiple access network where the base station allocates spectrum and power resources to a set of users. We aim to jointly optimize the sub-channel assignment and power allocation to maximize the weighted total sum-rate while taking into account user fairness. We formulate the sub-channel allocation problem as equivalent to a many-to-many two-sided user-subchannel matching game in which the set of users and sub-channels are considered as two sets of players pursuing their own interests. We then propose a matching algorithm which converges to a two-side exchange stable matching after a limited number of iterations. A joint solution is thus provided to solve the sub-channel assignment and power allocation problems iteratively. Simulation results show that the proposed algorithm greatly outperforms the orthogonal multiple access scheme and a previous non-orthogonal multiple access scheme.Comment: Accepted as a regular paper by IEEE Transactions on Wireless Communication

    Distributed Algorithms for Learning and Cognitive Medium Access with Logarithmic Regret

    Get PDF
    The problem of distributed learning and channel access is considered in a cognitive network with multiple secondary users. The availability statistics of the channels are initially unknown to the secondary users and are estimated using sensing decisions. There is no explicit information exchange or prior agreement among the secondary users. We propose policies for distributed learning and access which achieve order-optimal cognitive system throughput (number of successful secondary transmissions) under self play, i.e., when implemented at all the secondary users. Equivalently, our policies minimize the regret in distributed learning and access. We first consider the scenario when the number of secondary users is known to the policy, and prove that the total regret is logarithmic in the number of transmission slots. Our distributed learning and access policy achieves order-optimal regret by comparing to an asymptotic lower bound for regret under any uniformly-good learning and access policy. We then consider the case when the number of secondary users is fixed but unknown, and is estimated through feedback. We propose a policy in this scenario whose asymptotic sum regret which grows slightly faster than logarithmic in the number of transmission slots.Comment: Submitted to IEEE JSAC on Advances in Cognitive Radio Networking and Communications, Dec. 2009, Revised May 201
    • …
    corecore