1,342 research outputs found

    Time-optimal control of a particle in a dielectrophoretic system

    No full text
    International audienceWe study the time-optimal control of a particle in a dielectrophoretic system. This system consists of a time-varying nonuniform electric field which acts upon the particle by creating a dipole within it. The interaction between the induced dipole and the electric field generates the motion of the particle. The control is the voltage on the electrodes which induces the electric field. Since we are considering the motion of a particle on an invariant line in a chamber filled with fluid flowing at low Reynolds number, the dynamics have a two dimensional state; one for the particle position and the other for the induced dipole moment. In regard to time-optimal control, we address the issue of existence and uniqueness of optimal trajectories, and explicitly compute the optimal control and the corresponding minimum time. Finally, we cast our analysis in the framework of symplectic reduction theory in order to provide geometric insight into the problem

    On-chip high-speed sorting of micron-sized particles for high-throughput analysis

    No full text
    A new design of particle sorting chip is presented. The device employs a dielectrophoretic gate that deflects particles into one of two microfluidic channels at high speed. The device operates by focussing particles into the central streamline of the main flow channel using dielectrophoretic focussing. At the sorting junction (T- or Y-junction) two sets of electrodes produce a small dielectrophoretic force that pushes the particle into one or other of the outlet channels, where they are carried under the pressure-driven fluid flow to the outlet. For a 40mm wide and high channel, it is shown that 6micron diameter particles can be deflected at a rate of 300particles/s. The principle of a fully automated sorting device is demonstrated by separating fluorescent from non-fluorescent latex beads

    Neuroelectronic interfacing with cultured multielectrode arrays toward a cultured probe

    Get PDF
    Efficient and selective electrical stimulation and recording of neural activity in peripheral, spinal, or central pathways requires multielectrode arrays at micrometer scale. ¿Cultured probe¿ devices are being developed, i.e., cell-cultured planar multielectrode arrays (MEAs). They may enhance efficiency and selectivity because neural cells have been grown over and around each electrode site as electrode-specific local networks. If, after implantation, collateral sprouts branch from a motor fiber (ventral horn area) and if they can be guided and contacted to each ¿host¿ network, a very selective and efficient interface will result. Four basic aspects of the design and development of a cultured probe, coated with rat cortical or dorsal root ganglion neurons, are described. First, the importance of optimization of the cell-electrode contact is presented. It turns out that impedance spectroscopy, and detailed modeling of the electrode-cell interface, is a very helpful technique, which shows whether a cell is covering an electrode and how strong the sealing is. Second, the dielectrophoretic trapping method directs cells efficiently to desired spots on the substrate, and cells remain viable after the treatment. The number of cells trapped is dependent on the electric field parameters and the occurrence of a secondary force, a fluid flow (as a result of field-induced heating). It was found that the viability of trapped cortical cells was not influenced by the electric field. Third, cells must adhere to the surface of the substrate and form networks, which are locally confined, to one electrode site. For that, chemical modification of the substrate and electrode areas with various coatings, such as polyethyleneimine (PEI) and fluorocarbon monolayers promotes or inhibits adhesion of cells. Finally, it is shown how PEI patterning, by a stamping technique, successfully guides outgrowth of collaterals from a neonatal rat lumbar spinal cord explant, after six days in cultur

    Rapid and selective concentration of bacteria, viruses, and proteins using alternating current signal superimposition on two coplanar electrodes

    Get PDF
    Dielectrophoresis (DEP) is usually effective close to the electrode surface. Several techniques have been developed to overcome its drawbacks and to enhance dielectrophoretic particle capture. Here we present a simple technique of superimposing alternating current DEP (high-frequency signals) and electroosmosis (EO; low-frequency signals) between two coplanar electrodes (gap: 25 mu m) using a lab-made voltage adder for rapid and selective concentration of bacteria, viruses, and proteins, where we controlled the voltages and frequencies of DEP and EO separately. This signal superimposition technique enhanced bacterial capture (Escherichia coli K-12 against 1-mu m-diameter polystyrene beads) more selectively (>99%) and rapidly (similar to 30 s) at lower DEP (5 Vpp) and EO (1.2 Vpp) potentials than those used in the conventional DEP capture studies. Nanometer-sized MS2 viruses and troponin I antibody proteins were also concentrated using the superimposed signals, and significantly more MS2 and cTnI-Ab were captured using the superimposed signals than the DEP (10 Vpp) or EO (2 Vpp) signals alone (p < 0.035) between the two coplanar electrodes and at a short exposure time (1 min). This technique has several advantages, such as simplicity and low cost of electrode fabrication, rapid and large collection without electrolysis

    Dielectrophoretic characterization of particles and erythrocytes

    Get PDF
    Medical lab work, such as blood testing, will one day be near instantaneous and inexpensive via capabilities enabled by the fast growing world of microtechnology. In this research study, sorting and separation of different ABO blood types have been investigated by applying alternating and direct electric fields using class=SpellE\u3edielectrophoresis in microdevices. Poly(dimethylsiloxane) (PDMS) microdevices, fabricated by standard photolithography techniques have been used. Embedded perpendicular platinum (Pt) electrodes to generate forces in AC dielectrophoresis were used to successfully distinguish positive ABO blood types, with O+ distinguishable from other blood types at \u3e95% confidence. This is an important foundation for exploring DC dielectrophoretic sorting of blood types. The expansion of red blood cell sorting employing direct current insulative class=SpellE\u3edielectrophoresis (DC-iDEP) is novel. Here Pt electrodes were remotely situated in the inlet and outlet ports of the microdevice and an insulating obstacle generates the required dielectrophoretic force. The presence of ABO antigens on the red blood cell were found to affect the class=SpellE\u3edielectrophoretic deflection around the insulating obstacle thus sorting cells by type. To optimize the placement of insulating obstacle in the microchannel, COMSOL Multiphysics® simulations were performed. Microdevice dimensions were optimized by evaluating the behaviors of fluorescent polystyrene particles of three different sizes roughly corresponding to the three main components of blood: platelets (2-4 µm), erythrocytes (6-8 µm) and leukocytes (10-15 µm). This work provided the operating conditions for successfully performing size dependent blood cell insulator based DC dielectrophoresis in PDMS microdevices. In subsequent studies, the optimized microdevice geometry was then used for continuous separation of erythrocytes. The class=SpellE\u3emicrodevice design enabled erythrocyte collection into specific channels based on the cell’s deflection from the high field density region of the obstacle. The channel with the highest concentration of cells is indicative of the ABO blood type of the sample. DC resistance measurement system for quantification of erythrocytes was developed with single PDMS class=SpellE\u3emicrochannel system to be integrated with the DC- class=SpellE\u3eiDEP device developed in this research. This lab-on-a-chip technology application could be applied to emergency situations and naturalcalamities for accurate, fast, and portable blood typing with minimal error

    Dielectrophoretic characterization of particles and erythrocytes

    Get PDF
    Medical lab work, such as blood testing, will one day be near instantaneous and inexpensive via capabilities enabled by the fast growing world of microtechnology. In this research study, sorting and separation of different ABO blood types have been investigated by applying alternating and direct electric fields using class=SpellE\u3edielectrophoresis in microdevices. Poly(dimethylsiloxane) (PDMS) microdevices, fabricated by standard photolithography techniques have been used. Embedded perpendicular platinum (Pt) electrodes to generate forces in AC dielectrophoresis were used to successfully distinguish positive ABO blood types, with O+ distinguishable from other blood types at \u3e95% confidence. This is an important foundation for exploring DC dielectrophoretic sorting of blood types. The expansion of red blood cell sorting employing direct current insulative class=SpellE\u3edielectrophoresis (DC-iDEP) is novel. Here Pt electrodes were remotely situated in the inlet and outlet ports of the microdevice and an insulating obstacle generates the required dielectrophoretic force. The presence of ABO antigens on the red blood cell were found to affect the class=SpellE\u3edielectrophoretic deflection around the insulating obstacle thus sorting cells by type. To optimize the placement of insulating obstacle in the microchannel, COMSOL Multiphysics® simulations were performed. Microdevice dimensions were optimized by evaluating the behaviors of fluorescent polystyrene particles of three different sizes roughly corresponding to the three main components of blood: platelets (2-4 µm), erythrocytes (6-8 µm) and leukocytes (10-15 µm). This work provided the operating conditions for successfully performing size dependent blood cell insulator based DC dielectrophoresis in PDMS microdevices. In subsequent studies, the optimized microdevice geometry was then used for continuous separation of erythrocytes. The class=SpellE\u3emicrodevice design enabled erythrocyte collection into specific channels based on the cell’s deflection from the high field density region of the obstacle. The channel with the highest concentration of cells is indicative of the ABO blood type of the sample. DC resistance measurement system for quantification of erythrocytes was developed with single PDMS class=SpellE\u3emicrochannel system to be integrated with the DC- class=SpellE\u3eiDEP device developed in this research. This lab-on-a-chip technology application could be applied to emergency situations and naturalcalamities for accurate, fast, and portable blood typing with minimal error

    UTILIZING DIELECTROPHORESIS TO DETERMINE THE PHYSIOLOGICAL DIFFERENCES OF EUKARYOTIC CELLS

    Get PDF
    Type 1 diabetes affects over 108,000 children, and this number is steadily increasing. Current insulin therapies help manage the disease but are not a cure. Over a child’s lifetime they can develop kidney disease, blindness, cardiovascular disease and many other issues due to the complications of type 1 diabetes. This autoimmune disease destroys beta cells located in the pancreas, which are used to regulate glucose levels in the body. Because there is no cure and many children are affected by the disease there is a need for alternative therapeutic options that can lead to a cure. Human mesenchymal stem cells (hMSCs) are an important cell source for stem cell therapeutics due to their differentiation capacity, self-renewal, and trophic activity. hMSCs are readily available in the bone marrow, and act as an internal repair system within the body, and they have been shown to differentiate into insulin producing cells. However, after isolation hMSCs are a heterogeneous cell population, which requires secondary processing. To resolve the heterogeneity issue hMSCs are separated using fluorescent- and magnetic-activate cell sorting with antigen labeling. These techniques are efficient but reduce cell viability after separation due to the cell labeling. Therefore, to make hMSCs more readily available for type 1 diabetes therapeutics, they should be separated without diminishing there functional capabilities. Dielectrophoresis is an alternative separation technique that has the capability to separated hMSCs. This dissertation uses dielectrophoresis to characterize the dielectric properties of hMSCs. The goal is to use hMSCs dielectric signature as a separation criteria rather than the antigen labeling implemented with FACS and MACS. DEP has been used to characterize other cell systems, and is a viable separation technique for hMSCs
    corecore