65,355 research outputs found

    A Review of Audio Features and Statistical Models Exploited for Voice Pattern Design

    Full text link
    Audio fingerprinting, also named as audio hashing, has been well-known as a powerful technique to perform audio identification and synchronization. It basically involves two major steps: fingerprint (voice pattern) design and matching search. While the first step concerns the derivation of a robust and compact audio signature, the second step usually requires knowledge about database and quick-search algorithms. Though this technique offers a wide range of real-world applications, to the best of the authors' knowledge, a comprehensive survey of existing algorithms appeared more than eight years ago. Thus, in this paper, we present a more up-to-date review and, for emphasizing on the audio signal processing aspect, we focus our state-of-the-art survey on the fingerprint design step for which various audio features and their tractable statistical models are discussed.Comment: http://www.iaria.org/conferences2015/PATTERNS15.html ; Seventh International Conferences on Pervasive Patterns and Applications (PATTERNS 2015), Mar 2015, Nice, Franc

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics

    Score-Informed Source Separation for Musical Audio Recordings [An overview]

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Quantifying Self-Organization with Optimal Wavelets

    Full text link
    The optimal wavelet basis is used to develop quantitative, experimentally applicable criteria for self-organization. The choice of the optimal wavelet is based on the model of self-organization in the wavelet tree. The framework of the model is founded on the wavelet-domain hidden Markov model and the optimal wavelet basis criterion for self-organization which assumes inherent increase in statistical complexity, the information content necessary for maximally accurate prediction of the system's dynamics. At the same time the method, presented here for the one-dimensional data of any type, performs superior denoising and may be easily generalized to higher dimensions.Comment: 12 pages, 3 figure

    Gaussian mixture gain priors for regularized nonnegative matrix factorization in single-channel source separation

    Get PDF
    We propose a new method to incorporate statistical priors on the solution of the nonnegative matrix factorization (NMF) for single-channel source separation (SCSS) applications. The Gaussian mixture model (GMM) is used as a log-normalized gain prior model for the NMF solution. The normalization makes the prior models energy independent. In NMF based SCSS, NMF is used to decompose the spectra of the observed mixed signal as a weighted linear combination of a set of trained basis vectors. In this work, the NMF decomposition weights are enforced to consider statistical prior information on the weight combination patterns that the trained basis vectors can jointly receive for each source in the observed mixed signal. The NMF solutions for the weights are encouraged to increase the loglikelihood with the trained gain prior GMMs while reducing the NMF reconstruction error at the same time

    Single channel speech-music separation using matching pursuit and spectral masks

    Get PDF
    A single-channel speech music separation algorithm based on matching pursuit (MP) with multiple dictionaries and spectral masks is proposed in this work. A training data for speech and music signals is used to build two sets of magnitude spectral vectors of each source signal. These vectors’ sets are called dictionaries, and the vectors are called atoms. Matching pursuit is used to sparsely decompose the magnitude spectrum of the observed mixed signal as a nonnegative weighted linear combination of the best atoms in the two dictionaries that match the mixed signal structure. The weighted sum of the resulting decomposition terms that include atoms from the speech dictionary is used as an initial estimate of the speech signal contribution in the mixed signal, and the weighted sum of the remaining terms for the music signal contribution. The initial estimate of each source is used to build a spectral mask that is used to reconstruct the source signals. Experimental results show that integrating MP with spectral mask gives good separation results

    A preliminary approach to intelligent x-ray imaging for baggage inspection at airports

    Get PDF
    Identifying explosives in baggage at airports relies on being able to characterize the materials that make up an X-ray image. If a suspicion is generated during the imaging process (step 1), the image data could be enhanced by adapting the scanning parameters (step 2). This paper addresses the first part of this problem and uses textural signatures to recognize and characterize materials and hence enabling system control. Directional Gabor-type filtering was applied to a series of different X-ray images. Images were processed in such a way as to simulate a line scanning geometry. Based on our experiments with images of industrial standards and our own samples it was found that different materials could be characterized in terms of the frequency range and orientation of the filters. It was also found that the signal strength generated by the filters could be used as an indicator of visibility and optimum imaging conditions predicted
    • …
    corecore