71,370 research outputs found

    A reconfigurable real-time SDRAM controller for mixed time-criticality systems

    Get PDF
    Verifying real-time requirements of applications is increasingly complex on modern Systems-on-Chips (SoCs). More applications are integrated into one system due to power, area and cost constraints. Resource sharing makes their timing behavior interdependent, and as a result the verification complexity increases exponentially with the number of applications. Predictable and composable virtual platforms solve this problem by enabling verification in isolation, but designing SoC resources suitable to host such platforms is challenging. This paper focuses on a reconfigurable SDRAM controller for predictable and composable virtual platforms. The main contributions are: 1) A run-time reconfigurable SDRAM controller architecture, which allows trade-offs between guaranteed bandwidth, response time and power. 2) A methodology for offering composable service to memory clients, by means of composable memory patterns. 3) A reconfigurable Time-Division Multiplexing (TDM) arbiter and an associated reconfiguration protocol. The TDM slot allocations can be changed at run time, while the predictable and composable performance guarantees offered to active memory clients are unaffected by the reconfiguration. The SDRAM controller has been implemented as a TLM-level SystemC model, and in synthesizable VHDL for use on an FPGA

    Composable Virtual Memory for an Embedded SoC

    Full text link
    Systems on a Chip concurrently execute multiple applications that may start and stop at run-time, creating many use-cases. Composability reduces the verifcation effort, by making the functional and temporal behaviours of an application independent of other applications. Existing approaches link applications to static address ranges that cannot be reused between applications that are not simultaneously active, wasting resources. In this paper we propose a composable virtual memory scheme that enables dynamic binding and relocation of applications. Our virtual memory is also predictable, for applications with real-time constraints. We integrated the virtual memory on, CompSOC, an existing composable SoC prototyped in FPGA. The implementation indicates that virtual memory is in general expensive, because it incurs a performance loss around 39% due to address translation latency. On top of this, composability adds to virtual memory an insigni cant extra performance penalty, below 1%

    A real-time virtio-based framework for predictable inter-VM communication

    Full text link
    Ensuring real-time properties on current heterogeneous multiprocessor systems on a chip is a challenging task. Furthermore, online artificial intelligent applications –which are routinely deployed on such chips– pose increasing pressure on the memory subsystem that becomes a source of unpredictability. Although techniques have been proposed to restore independent access to memory for concurrently executing virtual machines (VM), providing predictable inter-VM communication remains challenging. In this work, we tackle the problem of predictably transferring data between virtual machines and virtualized hardware resources on multiprocessor systems on chips under consideration of memory interference. We design a "broker-based" real-time communication framework for otherwise isolated virtual machines, provide a virtio-based reference implementation on top of the Jailhouse hypervisor, assess its overheads for FreeRTOS virtual machines, and formally analyze its communication flow schedulability under consideration of the implementation overheads. Furthermore, we define a methodology to assess the maximum DRAM memory saturation empirically, evaluate the framework's performance and compare it with the theoretical schedulability.Accepted manuscrip

    Predictable migration and communication in the Quest-V multikernal

    Full text link
    Quest-V is a system we have been developing from the ground up, with objectives focusing on safety, predictability and efficiency. It is designed to work on emerging multicore processors with hardware virtualization support. Quest-V is implemented as a ``distributed system on a chip'' and comprises multiple sandbox kernels. Sandbox kernels are isolated from one another in separate regions of physical memory, having access to a subset of processing cores and I/O devices. This partitioning prevents system failures in one sandbox affecting the operation of other sandboxes. Shared memory channels managed by system monitors enable inter-sandbox communication. The distributed nature of Quest-V means each sandbox has a separate physical clock, with all event timings being managed by per-core local timers. Each sandbox is responsible for its own scheduling and I/O management, without requiring intervention of a hypervisor. In this paper, we formulate bounds on inter-sandbox communication in the absence of a global scheduler or global system clock. We also describe how address space migration between sandboxes can be guaranteed without violating service constraints. Experimental results on a working system show the conditions under which Quest-V performs real-time communication and migration.National Science Foundation (1117025

    Programming MPSoC platforms: Road works ahead

    Get PDF
    This paper summarizes a special session on multicore/multi-processor system-on-chip (MPSoC) programming challenges. The current trend towards MPSoC platforms in most computing domains does not only mean a radical change in computer architecture. Even more important from a SW developer´s viewpoint, at the same time the classical sequential von Neumann programming model needs to be overcome. Efficient utilization of the MPSoC HW resources demands for radically new models and corresponding SW development tools, capable of exploiting the available parallelism and guaranteeing bug-free parallel SW. While several standards are established in the high-performance computing domain (e.g. OpenMP), it is clear that more innovations are required for successful\ud deployment of heterogeneous embedded MPSoC. On the other hand, at least for coming years, the freedom for disruptive programming technologies is limited by the huge amount of certified sequential code that demands for a more pragmatic, gradual tool and code replacement strategy

    Predictable Code and Data Paging for Real Time Systems

    Full text link
    There is a need for using virtual memory in real-time ap-plications: using virtual addressing provides isolation between concurrent processes; in addition, paging allows the execution of applications whose size is larger than main memory capac-ity, which is useful in embedded systems where main memory is expensive and thus scarce. However, virtual memory is gen-erally avoided when developing real-time and embedded appli-cations due to predictability issues. In this paper we propose a predictable paging system in which the page loading and page eviction points are selected at compile-time. The contents of main memory is selected using an Integer Linear Programming (ILP) formulation. Our approach is applied to code, static data and stack regions of individual tasks. We show that the time re-quired for selecting memory contents is reasonable for all ap-plications including the largest ones, demonstrating the scala-bility of our approach. Experimental results compare our ap-proach with a previous one, based on graph coloring. It shows that quality of page allocation is generally improved, with an average improvement of 30 % over the previous approach. An-other comparison with a state-of-the-art demand-paging sys-tem shows that predictability does not come at the price of per-formance loss. 1
    • …
    corecore