73,307 research outputs found

    Adaptive Resonance Associative Map: A Hierarchical ART System for Fast Stable Associative Learning

    Full text link
    This paper introduces a new class of predictive ART architectures, called Adaptive Resonance Associative Map (ARAM) which performs rapid, yet stable heteroassociative learning in real time environment. ARAM can be visualized as two ART modules sharing a single recognition code layer. The unit for recruiting a recognition code is a pattern pair. Code stabilization is ensured by restricting coding to states where resonances are reached in both modules. Simulation results have shown that ARAM is capable of self-stabilizing association of arbitrary pattern pairs of arbitrary complexity appearing in arbitrary sequence by fast learning in real time environment. Due to the symmetrical network structure, associative recall can be performed in both directions.Air Force Office of Scientific Research (90-0128

    Phase Clocks for Transient Fault Repair

    Full text link
    Phase clocks are synchronization tools that implement a form of logical time in distributed systems. For systems tolerating transient faults by self-repair of damaged data, phase clocks can enable reasoning about the progress of distributed repair procedures. This paper presents a phase clock algorithm suited to the model of transient memory faults in asynchronous systems with read/write registers. The algorithm is self-stabilizing and guarantees accuracy of phase clocks within O(k) time following an initial state that is k-faulty. Composition theorems show how the algorithm can be used for the timing of distributed procedures that repair system outputs.Comment: 22 pages, LaTe

    Randomization Adaptive Self-Stabilization

    Full text link
    We present a scheme to convert self-stabilizing algorithms that use randomization during and following convergence to self-stabilizing algorithms that use randomization only during convergence. We thus reduce the number of random bits from an infinite number to a bounded number. The scheme is applicable to the cases in which there exits a local predicate for each node, such that global consistency is implied by the union of the local predicates. We demonstrate our scheme over the token circulation algorithm of Herman and the recent constant time Byzantine self-stabilizing clock synchronization algorithm by Ben-Or, Dolev and Hoch. The application of our scheme results in the first constant time Byzantine self-stabilizing clock synchronization algorithm that uses a bounded number of random bits

    Towards Fully Passive Time-Bin Quantum Key Distribution over Multi-Mode Channels

    Full text link
    Phase stabilization of distant quantum time-bin interferometers is a major challenge for quantum communication networks, and is typically achieved by exchanging optical reference signals, which can be particularly challenging over free-space channels. We demonstrate a novel approach using reference frame independent time-bin quantum key distribution that completely avoids the need for active relative phase stabilization while simultaneously overcoming a highly multi-mode channel without any active mode filtering. We realized a proof-of-concept demonstration using hybrid polarization and time-bin entangled photons, that achieved a sustained asymptotic secure key rate of greater than 0.06 bits/coincidence over a 15m multi-mode fiber optical channel. This is achieved without any mode filtering, mode sorting, adaptive optics, active basis selection, or active phase alignment. This scheme enables passive self-compensating time-bin quantum communication which can be readily applied to long-distance links and various wavelengths, and could be useful for a variety of spatially multi-mode and fluctuating channels involving rapidly moving platforms, including airborne and satellite systems.Comment: 12 pages, 4 Figures, 1 Tabl
    corecore