4 research outputs found

    Time series model selection with a meta-learning approach; evidence from a pool of forecasting algorithms

    No full text
    One of the challenging questions in time series forecasting is how to find the best algorithm. In recent years, a recommender system scheme has been developed for time series analysis using a meta-learning approach. This system selects the best forecasting method with consideration of the time series characteristics. In this paper, we propose a novel approach to focusing on some of the unanswered questions resulting from the use of meta-learning in time series forecasting. Therefore, three main gaps in previous works are addressed including, analyzing various subsets of top forecasters as inputs for meta-learners; evaluating the effect of forecasting error measures; and assessing the role of the dimensionality of the feature space on the forecasting errors of meta-learners. All of these objectives are achieved with the help of a diverse state-of-the-art pool of forecasters and meta-learners. For this purpose, first, a pool of forecasting algorithms is implemented on the NN5 competition dataset and ranked based on the two error measures. Then, six machine-learning classifiers known as meta-learners, are trained on the extracted features of the time series in order to assign the most suitable forecasting method for the various subsets of the pool of forecasters. Furthermore, two-dimensionality reduction methods are implemented in order to investigate the role of feature space dimension on the performance of meta-learners. In general, it was found that meta-learners were able to defeat all of the individual benchmark forecasters; this performance was improved even after applying the feature selection method
    corecore