49 research outputs found

    Development and implementation of quadratically distorted (QD) grating and grisms system for 4D multi-colour microscopy imaging (MCMI)

    Get PDF
    The recent emergence of super-resolution microscopy imaging techniques has surpassed the diffraction limit to improve image resolution. Contrary to the breakthroughs of spatial resolution, high temporal resolution remains a challenge. This dissertation demonstrates a simple, on axis, 4D (3D + time) multi-colour microscopy imaging (MCMI) technology that delivers simultaneous 3D broadband imaging over cellular volumes, which is especially applicable to the real-time imaging of fast moving biospecimens. Quadratically distorted (QD) grating, in the form of an off axis-Fresnel zone plate, images multiple object planes simultaneously on a single image plane. A delicate mathematical model of 2D QD grating has been established and implemented in the design and optimization of QD grating. Grism, a blazed grating and prism combination, achieves chromatic control in the 4D multi-plane imaging. A pair of grisms, whose separation can be varied, provide a collimated beam with a tuneable chromatic shear from a collimated polychromatic input. The optical system based on QD grating and grisms has been simply appended to the camera port of a commercial microscope, and a few bioimaging tests have been performed, i.e. the 4D chromatically corrected imaging of fluorescence microspheres, MCF-7 and HeLa cells. Further investigation of bioimaging problems is still in progress

    Design of optimal equalizers and precoders for MIMO channels

    Get PDF
    Channel equalization has been extensively studied as a method of combating ISI and ICI for high speed MIMO data communication systems. This dissertation focuses on optimal channel equalization in the presence of non-white observation noises with unknown PSD but bounded power-norm. A worst-case approach to optimal design of channel equalizers leads to an equivalent optimal H-infinity filtering problem for the MIMO communication systems. An explicit design algorithm is derived which not only achieves the zero-forcing (ZF) condition, but also minimizes the RMS error between the transmitted symbols and the received symbols. The second part of this dissertation investigates the design of optimal precoders which minimize the bit error rate (BER) subject to a fixed transmit-power constraint for the multiple antennas downlink communication channels under the perfect reconstruction (PR) condition. The closed form solutions are derived and an efficient design algorithm is proposed. The performance evaluations indicate that the optimal precoder design for multiple antennas communication systems proposed herein is an attractive/reasonable alternative to the existing precoder design techniques

    Channel modeling and resource allocation in OFDM systems

    Get PDF
    The increasing demand for high data rate in wireless communication systems gives rise to broadband communication systems. The radio channel is plagued by multipath propagation, which causes frequency-selective fading in broadband signals. Orthogonal Frequency-Division Multiplexing (OFDM) is a modulation scheme specifically designed to facilitate high-speed data transmission over frequency-selective fading channels. The problem of channel modeling in the frequency domain is first investigated for the wideband and ultra wideband wireless channels. The channel is converted into an equivalent discrete channel by uniformly sampling the continuous channel frequency response (CFR), which results in a discrete CFR. A necessary and sufficient condition is established for the existence of parametric models for the discrete CFR. Based on this condition, we provide a justification for the effectiveness of previously reported autoregressive (AR) models in the frequency domain of wideband and ultra wideband channels. Resource allocation based on channel state information (CSI) is known to be a very powerful method for improving the spectral efficiency of OFDM systems. Bit and power allocation algorithms have been discussed for both static channels, where perfect knowledge of CSI is assumed, and time-varying channels, where the knowledge of CSI is imperfect. In case of static channels, the optimal resource allocation for multiuser OFDM systems has been investigated. Novel algorithms are proposed for subcarrier allocation and bit-power allocation with considerably lower complexity than other schemes in the literature. For time-varying channel, the error in CSI due to channel variation is recognized as the main obstacle for achieving the full potential of resource allocation. Channel prediction is proposed to suppress errors in the CSI and new bit and power allocation schemes incorporating imperfect CSI are presented and their performance is evaluated through simulations. Finally, a maximum likelihood (ML) receiver for Multiband Keying (MBK) signals is discussed, where MBK is a modulation scheme proposed for ultra wideband systems (UWB). The receiver structure and the associated ML decision rule is derived through analysis. A suboptimal algorithm based on a depth-first tree search is introduced to significantly reduce the computational complexity of the receiver

    Optimisation des performances de réseaux de capteurs dynamiques par le contrôle de synchronisation dans les systèmes ultra large bande

    Get PDF
    The basic concept of Impulse-Radio UWB (IR-UWB) technology is to transmit and receive baseband impulse waveform streams of very low power density and ultra-short duration pulses (typically at nanosecond scale). These properties of UWB give rise to fine time-domain resolution, rich multipath diversity, low power and low cost on-chip implementation facility, high secure and safety, enhanced penetration capability, high user capacity, and potential spectrum compatibility with existing narrowband systems. Due to all these features, UWB technology has been considered as a feasible technology for WSN applications. While UWB has many reasons to make it a useful and exciting technology for wireless sensor networks and many other applications, it also has some challenges which must be overcome for it to become a popular approach, such as interference from other UWB users, accurate modelling of the UWB channel in various environments, wideband RF component (antennas, low noise amplifiers) designs, accurate synchronization, high sampling rate for digital implementations, and so on. In this thesis, we will focus only on one of the most critical issues in ultra wideband systems: Timing Synchronization.Dans cette thèse nous nous sommes principalement concentrés sur les transmissions impulsion radio Ultra Large Bande (UWB-IR) qui a plusieurs avantages grâce à la nature de sa bande très large (entre 3.1GHZ et 10.6GHz) qui permet un débit élevé et une très bonne résolution temporelle. Ainsi, la très courte durée des impulsions émises assure une transmission robuste dans un canal multi-trajets dense. Enfin la faible densité spectrale de puissance du signal permet au système UWB de coexister avec les applications existantes. En raison de toutes ces caractéristiques, la technologie UWB a été considérée comme une technologie prometteuse pour les applications WSN. Cependant, il existe plusieurs défis technologiques pour l'implémentation des systèmes UWB. A savoir, une distorsion différente de la forme d'onde du signal reçu pour chaque trajet, la conception d'antennes très larges bandes de petites dimensions et non coûteuses, la synchronisation d'un signal impulsionnel, l'utilisation de modulation d'onde d'ordre élevé pour améliorer le débit etc. Dans ce travail, Nous allons nous intéresser à l'étude et l'amélioration de la synchronisation temporelle dans les systèmes ULB

    Digital Signal Processing (Second Edition)

    Get PDF
    This book provides an account of the mathematical background, computational methods and software engineering associated with digital signal processing. The aim has been to provide the reader with the mathematical methods required for signal analysis which are then used to develop models and algorithms for processing digital signals and finally to encourage the reader to design software solutions for Digital Signal Processing (DSP). In this way, the reader is invited to develop a small DSP library that can then be expanded further with a focus on his/her research interests and applications. There are of course many excellent books and software systems available on this subject area. However, in many of these publications, the relationship between the mathematical methods associated with signal analysis and the software available for processing data is not always clear. Either the publications concentrate on mathematical aspects that are not focused on practical programming solutions or elaborate on the software development of solutions in terms of working ‘black-boxes’ without covering the mathematical background and analysis associated with the design of these software solutions. Thus, this book has been written with the aim of giving the reader a technical overview of the mathematics and software associated with the ‘art’ of developing numerical algorithms and designing software solutions for DSP, all of which is built on firm mathematical foundations. For this reason, the work is, by necessity, rather lengthy and covers a wide range of subjects compounded in four principal parts. Part I provides the mathematical background for the analysis of signals, Part II considers the computational techniques (principally those associated with linear algebra and the linear eigenvalue problem) required for array processing and associated analysis (error analysis for example). Part III introduces the reader to the essential elements of software engineering using the C programming language, tailored to those features that are used for developing C functions or modules for building a DSP library. The material associated with parts I, II and III is then used to build up a DSP system by defining a number of ‘problems’ and then addressing the solutions in terms of presenting an appropriate mathematical model, undertaking the necessary analysis, developing an appropriate algorithm and then coding the solution in C. This material forms the basis for part IV of this work. In most chapters, a series of tutorial problems is given for the reader to attempt with answers provided in Appendix A. These problems include theoretical, computational and programming exercises. Part II of this work is relatively long and arguably contains too much material on the computational methods for linear algebra. However, this material and the complementary material on vector and matrix norms forms the computational basis for many methods of digital signal processing. Moreover, this important and widely researched subject area forms the foundations, not only of digital signal processing and control engineering for example, but also of numerical analysis in general. The material presented in this book is based on the lecture notes and supplementary material developed by the author for an advanced Masters course ‘Digital Signal Processing’ which was first established at Cranfield University, Bedford in 1990 and modified when the author moved to De Montfort University, Leicester in 1994. The programmes are still operating at these universities and the material has been used by some 700++ graduates since its establishment and development in the early 1990s. The material was enhanced and developed further when the author moved to the Department of Electronic and Electrical Engineering at Loughborough University in 2003 and now forms part of the Department’s post-graduate programmes in Communication Systems Engineering. The original Masters programme included a taught component covering a period of six months based on two semesters, each Semester being composed of four modules. The material in this work covers the first Semester and its four parts reflect the four modules delivered. The material delivered in the second Semester is published as a companion volume to this work entitled Digital Image Processing, Horwood Publishing, 2005 which covers the mathematical modelling of imaging systems and the techniques that have been developed to process and analyse the data such systems provide. Since the publication of the first edition of this work in 2003, a number of minor changes and some additions have been made. The material on programming and software engineering in Chapters 11 and 12 has been extended. This includes some additions and further solved and supplementary questions which are included throughout the text. Nevertheless, it is worth pointing out, that while every effort has been made by the author and publisher to provide a work that is error free, it is inevitable that typing errors and various ‘bugs’ will occur. If so, and in particular, if the reader starts to suffer from a lack of comprehension over certain aspects of the material (due to errors or otherwise) then he/she should not assume that there is something wrong with themselves, but with the author

    Efficient compression of motion compensated residuals

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Crustal tomography of the Po Plain and calibration of location procedures

    Get PDF
    2012/2013I terremoti costituiscono un disastro naturale ricorrente su tutto il territorio italiano e per questo sono estremamente importanti interventi mirati e rapidi di protezione civile. La rapidità di questi interventi dipende dalla produzione di localizzazioni veloci e possibilmente in tempo reale degli eventi sismici. La precisione delle localizzazioni, inoltre, è necessaria per identificare le faglie sismogenetiche. Per questi due aspetti, è necessario un miglioramento dei sistemi di monitoraggio esistenti in modo da poter accrescere la qualità delle localizzazioni automatiche in tempo reale. Lo scopo di questo studio è la scrittura di una procedura che localizza accuratamente eventi sismici in tempo reale. La qualità delle localizzazioni è fortemente dipendente dalla corretta determinazione delle fasi P ed S. A volte è difficile riconoscere il corretto arrivo di una fase, poiché il segnale sismico può essere di difficile lettura per differenti motivi, come, ad esempio, la complessità del meccanismo della faglia generatrice e la presenza di rumore sia naturale che artificiale. Per questo motivo abbiamo studiato, analizzato e comparato differenti metodi per la rilevazione delle fasi e per la localizzazione degli eventi sismici. Gli algoritmi di rilevazione delle fasi che sono stati valutati sono lo Short Time Average su Long Time Average ratio (STA/LTA) e la funzione di Akaike Information Criterion (AIC). Il primo di questi è una tecnica comune usata per distinguere il segnale sismico dal rumore. E’ basato sul calcolo continuo di due valori medi dell’ampiezza assoluta di un segnale sismico in due finestre di tempo di differente lunghezza: media sull’intervallo breve (STA) e media sull’intervallo lungo (LTA). Il rapporto di queste due medie (STA/LTA) viene comparato ad un valore di soglia. Quando questo rapporto è maggiore della soglia, viene rilevata una fase nel segnale sismico analizzato. Il settaggio di questo sistema dipende dalla scelta dei parametri, questo prouce instabilità. La funzione di AIC è una metodologia sofisticata e precisa [Akaike and Hirotugu, 1974], basata sul classico metodo della massima verosimiglianza. La sua applicazione più comune consiste nella selezione tra pi` modelli: la stima della massima verosimiglianza dei parametri del modello da il minimo della funzione AIC. Questo metodo è strettamente correlato alla scelta della finestra di tempo nella quale applicare la funzione. Per questo motivo è necessaria una combinazione di più tecniche in modo da poter scegliere automaticamente la finestra corretta. In un segnale sismico il minimo della funzione AIC identifica l’arrivo delle onde P o delle onde S. Questa funzione è utilizzata nella procedura dell’AutoPicker [Turino et al., 2010]. Una volta identificate le fasi, è necessario elaborarle in modo da poter localizzare eventi sismici. In Antelope la procedura di localizzazione è chiamata orbassoc. Questa metodologia legge le fasi rilevate tramite il metodo STA/LTA e cerca di produrre una localizzazione dell’evento sulle tre possibili griglie: telesismica, regionale e locale. La soluzione, che produce tempi teorici di percorrenza per ogni stazione, che si accordano maggiormente con le osservazioni, viene considerata la migliore. Nell’AutoPicker l’algoritmo di localizzazione è Hypoellipse [Lahr, 1979], nel quale i tempi di percorrenza sono stimati utilizzando una struttura a strati piani paralleli e gli ipocentri sono calcolati utilizzando il metodo di Geiger [Geiger, 1912]. In questo lavoro abbiamo utilizzato metodologie per la localizzazione diverse da quelle assolute come Hypoellipse. L’HypoDD [Waldhauser and Ellsworth, 2000] è un algoritmo relativo, ovvero le localizzazioni vengono calcolate in riferimento alla localizzazione di un evento principale o dal sito di una stazione. Questo metodo può essere applicato solo nel caso in cui la distanza ipocentrale tra i due terremoti è piccola comparata alla distanza evento-stazione e alle eterogeneità laterali del campo delle velocità. In questi casi il percorso del raggio tra le due sorgenti e una stazione comune sono simili per gran parte del percorso del raggio. Per testare le prestazioni dell’AutoPicker, lo abbiamo applicato ad un database di 250 eventi registrati nell’area di contatto tra le Alpi e le Dinaridi nell’anno 2011 dalla rete C3ERN - the Central Eastern European Earthquake Reasearch Network [Dipartimento di Matematica e Geoscienze (DMG), Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Agencija RS za okolje (ARSO) e Zentralanstalt fr Meteorologie und Geodynamik (ZAMG)]. L’algoritmo automatico proposto è risultato essere un utile strumento per l’assegnazione automatica degli arrivi delle onde P ed S. Questo risultato incoraggiante ci ha permesso di procedere nel confronto tra questa nuova metodologia e Antelope, utilizzato da noi quotidianamente in tempo reale per rilevare fasi e localizzare eventi. La complessità del contesto tettonico influenza il percorso dei raggi e conseguentemente la localizzazione degli eventi. In regioni dove sono presenti molte strutture sismogenetiche, una localizzazione precisa della sequenza sismica è essenziale, in modo da capire quale è la faglia generatrice. In questi casi l’uso di modelli 1-D potrebbe non essere sufficiente, mentre un modello 3-D potrebbe descrivere al meglio l’area interessata. La tomografia dei primi arrivi è una tecnica comune per ottenere un modello tridimensionale dalla localizzazione degli eventi. In questo studio abbiamo utilizzato una tomografia di eventi locali (Local Earthquake Tomography, LET) [Aki, 1982]. La tomografia dei primi arrivi e la localizzazione 3-D degli eventi sono state eseguite, rispettivamente, utilizzando il Computer Aided Tomography per modelli 3D (Cat3D) [Cat3D user manual, 2008] e il Non Linear Location (NonLinLoc) [Lomax et al., 2000] attraverso una procedura iterativa. Il Cat3D viene utilizzato solitamente in sismica attiva, mentre in questo studio è stato applicato ad un caso sismologico. La principale differenza tra la sismica attiva e la sismologia sono le incertezze nel sistema tomografico. Nella sismica attiva la localizzazione della sorgente è ben definita mentre nella sismologia è una variabile con incertezza elevata che si propaga nella stima del percorso del raggio e dei tempi di percorrenza. Per risolvere questo problema, abbiamo utilizzato una procedura iterativa composta dalla tomografia dei primi arrivi e dalla rilocalizzazione degli eventi con il modello 3-D risultante. Dopo il verificarsi della sequenza sismica emiliana nel Maggio-Giugno 2012, abbiamo deciso di analizzarla come interessante caso di studio. La sequenza sismica è iniziata il 20 Maggio (02:03:53 UTC), con un terremoto di Ml 5.9 [Scognamiglio et al., 2012]. Questa sequenza è composta da migliaia di eventi, sei dei quali con Ml maggiore di 5.0, tra cui un evento di magnitudo locale 5.8, il 29 Maggio (07:00:03 UTC). Su questi eventi abbiamo testato le prestazioni dell’AutoPicker e di Antelope. Per fare ciò abbiamo rilevato manualmente le fasi e localizzato alcuni degli eventi maggiori della sequenza sismica. Questi eventi sono caratterizzati da fasi P, ma in particolar modo fasi S, difficili da rilevare, probabilmente a causa del complesso meccanismo di faglia. Inoltre la complessità del sistema tettonico assieme all’incertezza della profondità focale rendono problematiche le localizzazioni degli eventi. La sequenza sismica emiliana ha interessato un’area di 50 km con andamento E-W localizzata nell’angolo sud della Pianura Padana, interessando il settore centrale dell’arco di Ferrara appartenente al sistema esterno della cintura degli Appennini Settentrionali. L’arco di Ferrara è composto da due sistemi: le pieghe di Ferrara nel nordest e la piega di Mirandola localizzata nella parte più interna a sudovest [Govoni et al., 2014]. Abbiamo elaborato gli arrivi P ed S in modo da poter localizzare la sequenza sismica utilizzando differenti modelli di velocità trovati in letteratura: Bragato et al. [2011], Ciaccio and Chiarabba [2002],Costa et al. [1992], Iside, Zollo et al. [1995], Malagnini et al. [2012], Massa [2012] e quattro modelli geologici proposti da Lavecchia et al. [in prep.] L’idea è di produrre un insieme di localizzazioni di eventi clusterizzati con residui minimi, in modo da poter capire quale è la faglia generatrice. Questo lavoro è stato svolto in collaborazione con l'Università di Chieti e il Dipartimento di Protezione Civile (DPC). Dalla distribuzione ipocentrale delle soluzioni, sembra che l'arco di Mirandola non sia coinvolto nella sequenza sismica, mentre i segmenti della parte interna e centrale del sistema di sovrascorrimento di Ferrara sembrano essere stati attivati dalle sequenze sismiche del 29 e del 20 Maggio, rispettivamente. La complessità dell'area interessata dalla sequenza sismica dell'Emilia, richiede il calcolo di modelli tridimensionali di velocità in modo da poter localizzare più precisamente gli eventi. Come già detto, abbiamo elaborato una procedura iterativa: tomografia dei primi arrivi e localizzazioni 3-D degli eventi, attraverso l'uso rispettivamente del Cat3D e del NonLinLoc, in collaborazione con l'OGS. La sequenza sismica copre solo una piccola parte della regione (30x30 km^2 di larghezza e 20 km di profondità), per questo l'area investigata si limiterà alla porzione superiore della crosta. Come modelli iniziali di velocità abbiamo scelto: Costa et al, 1992; Massa et al. 2013 e NewModel1 (LaVecchia et al., in prep., i quali avevano errori verticali inferiori al chilometro nello studio precedente. Il miglior modello iniziale sembra essere quello di Massa et al. (2013), il quale mostra valori di rms bassi rispetti alle altre soluzioni. I tre modelli tridimensionali di velocità per le onde P risultanti mostrano caratteristiche comuni: uno strato superficiale a bassa velocità e uno strato spesso (5-20 km in profondità) a 5.5km/s. I risultati tomografici per i modelli Vs presentano un comune strato superficiale a bassa velocità e uno strato caratterizzato da valori di velocità per le onde S di 3.0 km/s. Le tre serie di soluzioni, dei differenti modelli di velocità, sono comparabili all'interno dell'intervallo di errore, anche in termini di qualità. Le localizzazioni per la scossa principale del 20 maggio 2012 sono sparpagliate rispetto a quelle della seconda scossa principale del 29 maggio. Una possibile causa potrebbe essere l'installazione delle stazioni temporanee nel campo vicino della sequenza sismica dopo il 20 maggio 2012. Per l'evento del 29 maggio, infatti, si hanno molte più registrazioni che per il primo evento del 20 e tutte in campo vicino. Le localizzazioni degli eventi ottenute da modelli tomografici tridimensionali sono meno disperse di quelle ottenute con modelli unidimensionali, anche se le localizzazioni dei due eventi principali sono simili. In profondità le due serie di soluzioni non differiscono in modo significativo. Per migliorare la qualità della procedura di localizzazione nel nostro centro di raccolta dati, vorremo installare una procedura automatica sia rapida sia precisa. Per raggiungere questo risultato abbiamo comparato l'AutoPicker con Antelope sulla sequenza sismica dell'Emilia. Questo confronto è di fondamentale importanza per comprendere quale dei due algoritmi rileva fasi e/o localizza eventi in modo più preciso. Il nostro scopo, infatti, è quello di unire ed implementare queste due tecniche in modo da ottenere un miglior rilevatore di fasi e localizzatore. I risultati di questo confronto ci hanno portato a concludere che l'AutoPicker trova più fasi e con maggior precisione rispetto ad Antelope, sia per le fasi P che per le fasi S. Nonostante ciò il processo di associazione delle fasi in Antelope è in grado di correggere gli errori delle fasi e trovare la corretta localizzazione dell'evento. Questo ci ha suggerito di implementare l'algoritmo dell'AutoPicker nella procedura di Anteope, in modo tale che l' AutoPicker definisca gli arrivi P ed S e Antelope li associ e localizzi gli eventi. Con il miglioramento delle reti sismiche e la possibilità di raccogliere enormi quantitativi di dati, è necessario produrre enormi database, in modo da poter avere un rapido accesso ad essi e di poterli rielaborare in tempo reale o quasi reale. Per questi enormi database la rilevazione manuale delle fasi è un lavoro oneroso, che richiede tanto tempo. La possibilità di avere uno strumento che rilevi automaticamente fasi di ottima qualità, che producano risultati similari a quelli ottenuti dall'inversione tomografica utilizzando le fasi rilevate manualmente, è sicuramente conveniente ed utile. Per questa ragione abbiamo confrontato due differenti tomografie dei primi arrivi, prodotte con la stessa tecnica dell'analisi precedente, che differiscono solo per i dati di partenza: la prima è stata ottenuta dalle fasi rilevate manualmente, la seconda dalle fasi rilevate automaticamente con l'AutoPicker per la sequenza sismica dell'Emilia. I risultati ottenuti indicano un incremento del valore medio dell' rms sia nelle localizzazioni sia nella tomografia per le fasi automatiche. Nonostante questo i modelli tridimensionali ottenuti ( Vp, Vs and Vp/Vs) sono comparabili. Pertanto sembra che gli errori nelle localizzazioni non influenzino i risultati tomografici ma inficino la precisione del sistema tomografico stesso. Quindi per database contenenti enormi quantità di dati è possibile utilizzare le fasi automatiche come dati di partenza, ottenendo risultati comparabili a quelli ottenuti con le fasi manuali.Earthquakes constitute a recurring natural disaster all over the Italian territory, and therefore civil defence focused interventions are extremely important. The rapidity of such interventions strongly depend on the production of fast and possibly real-time locations of the seismic events. The precise location of events is also needed to identify seismogenic faults. For these two aspects, an upgrade of the existing monitoring systems is fundamental to improve the automatic locations quality in a quasi real-time mode. The main purpose of this study is the production of a routine that will accurately locate seismic event in real-time. The quality of the locations strongly depends on the correct determination of the P- and S- phases. Sometimes it is hard to recognize the correct onset of a phase, since the signal can be blurred by various causes, such as, e.g., the complexity of the generating fault mechanism and the presence of natural or man-made noise. For this reason we have studied, analyzed and compared different phase picking and location methods. The picking algorithms that were evaluated are the Short Time Average over Long Time Average ratio (STA/LTA) and the Akaike Information Criterion (AIC) function. The first one is a common technique used to distinguish the seismic signal from noise. It is based on the continuous calculation of the average values of the absolute amplitude of a seismic signal in two moving-time windows with different lengths: the short-time average and the long-time average. The STA/LTA ratio is compared with a threshold value. When the ratio is larger than this threshold, the onset of a seismic signal is detected. The main disadvantage of this method is its instability, due to the parameters choice: a too long STA window could cause the non-detection of local events, whereas a too short STA window could cause the detection of man-made seismic noise. A high STA/LTA threshold records less events than the ones those have occurred, but false triggers are eliminated. If this value is chosen to be lower, more events will be detected, but more frequent false triggers could be recorded. This algorithm is part of the Antelope (BRRT, Boulder) detection procedure, used in this study. The AIC function is a precise and sophisticated methodology, being a revision of the classical maximum likelihood estimation procedure (Akaike, 1974). The AIC function is designed for statistical identification of model characteristics. Its most classical application consists in the selection of the best among several competing models; the maximum likelihood estimate of the model parameters gives the minimum of AIC function. It is strictly correlated to the correct choice of the time window in which apply the function, so it is necessary combined with other techniques, in order to automatically choose a correct window. This dependence on other methods, makes the application of the AIC function to detect phases, a complex methodology, which can be affected by errors in the parameter choices. The AIC function is used in the AutoPicker procedure (Turino et al., 2012). In a seismic signal the minimum of the AIC function identifies the P- or S- onset. In this automatic phase picker the time window in which to apply the function, in the case of P phases, is chosen by a combination of a band-pass filter and an envelope time function, used as “energy” detector to select the event in the waveform; for the S phases, the selection of the window is guided by a preliminary location of the P- phases. Once the P- and S- phases are identified, it is necessary to elaborate them in order to locate the seismic event. In Antelope the location procedure is called orbassoc. This methodology reads the pickings, determined through the use of the STA/LTA technique, and tries to produce an event location over three possible grids: teleseismic, regional and local. The solution that produces the minimum travel time residuals set (differences between synthetic travel times and observed travel times) is considered as the best one. In the AutoPicker the location algorithm is Hypoellipse (Lahr, 1979), in which the travel-times are estimated from a horizontally-layered velocity-structure and the hypocenter is calculated using Geiger's method (Geiger, 1912) to minimize the root mean square (rms) of the travel time residuals. In order to improve the location quality we have used in this work various location methodologies with respect to the absolute ones, such as Hypoellipse. The HypoDD (Waldhauser et al., 2000) is a relative algorithm, the locations depend either on the location of a master event or on a station site. This method can be applied only in the case when the hypocentral separation between two earthquakes is small compared to the event-station distance and the scale length of the velocity heterogeneities. In such cases the ray paths between the source region and a common station are similar along almost the entire ray path. In order to test the performances of the AutoPicker, we have applied it to a database of 250 events recorded in the year 2011 by the C3ERN - the Central Eastern European Earthquake Reasearch Network [Department of Mathematics and Geosciences (DMG), Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Agencija RS za okolje (ARSO) and Zentralanstalt für Meteorologie und Geodynamik (ZAMG)] – at the Alps-Dinarides contact. The proposed automatic picker appears to be a useful tool for assigning automatically onset P and S times to detected seismic signals for the purpose of rapid hypocenter calculations. These encouraging results have allowed us to proceed comparing this new picking methodology to another one, tested and used daily and in real-time by us to detect and locate events, the Antelope software. The complexity of the tectonic environment influences ray tracing and consequently the event locations. In regions where many seismogenic structures are present, a precise location of a seismic sequence is essential, in order to understand which fault is the generating one. In such cases the use of a 1-D velocity model might not be sufficient, so a 3-D velocity model is a better solution to describe the studied area. The travel-time tomography is a common technique to obtain a 3-D velocity model, from event locations. In this study we have chosen a local earthquake tomography (LET) (Aki, 1982). The travel time tomography and the 3-D event location are performed, respectively, using the Computer Aided Tomography for 3D models (Cat3D) software (Cat3D manual, 2008) and the Non Linear Location (NonLinLoc) software (Lomax et al., 2000) through an iterative procedure. The Cat3D is basically used in active seismics, but in this study it is applied to a seismological case. The main difference between active seismics and seismology are the unknowns in the tomographic system. In seismology the source location is an unknown parameter with a high uncertainty, while in active seismics the source locations are well defined. In this study, the introduction of the source location in the tomographic system, introduces uncertainties in obth the ray tracing and travel-times estimation. In order to solve this uncertainty, we used an iterative procedure composed by the application of tomography and the event location in resulting 3-D velocity model. After the occurrence of the Emilia seismic sequence in May-June 2012, we have decided to investigate it as an interesting study case. The sequence started on May 20 (02:03:53 UTC), with a ML 5.9 earthquake, preceded by a M_L 4.1 foreshock, three hours earlier (Scognamiglio et al., 2012). Theaftershock sequence comprised thousands of earthquakes, six of them with M_L ≥ 5.0. Among these, a M_L 5.8 earthquake, on May 29 (07:00:03 UTC), caused probably more damages than the first shock. Through the study of this seismic sequence we have tested the performances of the automatic picking algorithms. In order to do that, we have manually picked and located some of the major events of this seismic sequence. These events are characterized by P- and especiall

    Exploring Interferometric Realms: Modeling and Imaging of Stars, and Optical Test Bench Simulations

    Get PDF
    High-resolution interferometric imaging is currently the most accurate technique to image the surfaces of stars. However, optical interferometric imaging is a difficult ill-posed problem where a handful of imaging codes are able to find a solution, especially in three dimensions. We present the development of a 3D interferometric image reconstruction code, which has the capabilities to model/image the surfaces of spherical, spheroid, and Roche objects. We apply our open source code to two different data sets. The first application is for the RS CVn variable, lambda Andromedae, using archival interferometric data from the CHARA Array obtained with the MIRC instrument at two different epochs to better understand the evolution of its surface features. We are able to obtain precise measurements of its physical parameters as well as images of its surface detailing large-scale magnetic spots. Our results show that the reconstructed images of lambda Andromedae have starspots that seem to favor certain northern latitudes with very minimal to no spot activity in the southern latitudes, indicative of a non-solar dynamo. The second application is for the rapidly rotating star, Alderamin, with data obtained from CHARA with the MIRC-X instrument to continue unveiling the complexities of the internal mechanisms of rapid rotation. We present our preliminary imaging results, which show a slightly lower angular velocity compared to previous works along with a weak limb-darkening. These new results provide a quantitative result for limb-darkening for rapid rotators, which has not been explored before. In addition to our rapid rotator imaging, we integrate new a gravity darkening law, which will serve as improved initial parameter estimates for future imaging campaigns. To complement future imaging campaigns, we present preliminary results for a novel multi-beam atmospheric turbulence simulator that can be used to study free-space beam propagation. This latter project will serve as the groundwork for having movable telescopes at interferometric arrays, such as the CHARA Array, which will provide more (u,v) coverage and ultimately improve the quality of interferometric imaging. We use our simulator to investigate beam combination under severe ground layer turbulence conditions

    ИНТЕЛЛЕКТУАЛЬНЫЙ числовым программным ДЛЯ MIMD-компьютер

    Get PDF
    For most scientific and engineering problems simulated on computers the solving of problems of the computational mathematics with approximately given initial data constitutes an intermediate or a final stage. Basic problems of the computational mathematics include the investigating and solving of linear algebraic systems, evaluating of eigenvalues and eigenvectors of matrices, the solving of systems of non-linear equations, numerical integration of initial- value problems for systems of ordinary differential equations.Для більшості наукових та інженерних задач моделювання на ЕОМ рішення задач обчислювальної математики з наближено заданими вихідними даними складає проміжний або остаточний етап. Основні проблеми обчислювальної математики відносяться дослідження і рішення лінійних алгебраїчних систем оцінки власних значень і власних векторів матриць, рішення систем нелінійних рівнянь, чисельного інтегрування початково задач для систем звичайних диференціальних рівнянь.Для большинства научных и инженерных задач моделирования на ЭВМ решение задач вычислительной математики с приближенно заданным исходным данным составляет промежуточный или окончательный этап. Основные проблемы вычислительной математики относятся исследования и решения линейных алгебраических систем оценки собственных значений и собственных векторов матриц, решение систем нелинейных уравнений, численного интегрирования начально задач для систем обыкновенных дифференциальных уравнений
    corecore