2 research outputs found

    Co-existence of wireless communication systems in ISM bands: An analytical study

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    UHF propagation channel characterization for tunnel microcellular and personal communications.

    Get PDF
    by Yue Ping Zhang.Publication date from spine.Thesis (Ph.D.)--Chinese University of Hong Kong, 1995.Includes bibliographical references (leaves 194-200).DEDICATIONACKNOWLEDGMENTSChapterChapter 1. --- Introduction --- p.1Chapter 1.1 --- Brief Description of Tunnels --- p.1Chapter 1.2 --- Review of Tunnel Imperfect Waveguide Models --- p.2Chapter 1.3 --- Review of Tunnel Geometrical Optical Model --- p.4Chapter 1.4 --- Review of Tunnel Propagation Experimental Results --- p.6Chapter 1.5 --- Review of Existing Tunnel UHF Radio Communication Systems --- p.13Chapter 1.6 --- Statement of Problems to be Studied --- p.15Chapter 1.7 --- Organization --- p.15Chapter 2 --- Propagation in Empty Tunnels --- p.18Chapter 2.1 --- Introduction --- p.18Chapter 2.2 --- Propagation in Empty Tunnels --- p.18Chapter 2.2.1 --- The Imperfect Empty Straight Rectangular Waveguide Model --- p.19Chapter 2.2.2 --- The Hertz Vectors for Empty Straight Tunnels --- p.20Chapter 2.2.3 --- The Propagation Modal Equations for Empty Straight Tunnels --- p.23Chapter 2.2.4 --- The Propagation Characteristics of Empty Straight Tunnels --- p.26Chapter 2.2.5 --- Propagation Numerical Results in Empty Straight Tunnels --- p.30Chapter 2.3 --- Propagation in Empty Curved Tunnels --- p.36Chapter 2.3.1 --- The Imperfect Empty Curved Rectangular Waveguide Model --- p.37Chapter 2.3.2 --- The Hertz Vectors for Empty Curved Tunnels --- p.39Chapter 2.3.3 --- The Propagation Modal Equations for Empty Curved Tunnels --- p.41Chapter 2.3.4 --- The Propagation Characteristics of Empty Curved Tunnels --- p.43Chapter 2.2.5 --- Propagation Numerical Results in Empty Curved Tunnels --- p.47Chapter 2.4 --- Summary --- p.50Chapter 3 --- Propagation in Occupied Tunnels --- p.53Chapter 3.1 --- Introduction --- p.53Chapter 3.2 --- Propagation in Road Tunnels --- p.53Chapter 3.2.1 --- The Imperfect Partially Filled Rectangular Waveguide Model --- p.54Chapter 3.2.2 --- The Scalar Potentials for Road tunnels --- p.56Chapter 3.2.3 --- The Propagation Modal Equations for Road Tunnels --- p.59Chapter 3.2.4 --- Propagation Numerical Results in Road Tunnels --- p.61Chapter 3.3 --- Propagation in Railway Tunnels --- p.64Chapter 3.3.1 --- The Imperfect Periodically Loaded Rectangular Waveguide Model --- p.65Chapter 3.3.2 --- The Surface Impedance Approximation --- p.66Chapter 3.3.2.1 --- The Surface Impedance of a Semi-infinite Lossy Dielectric Medium --- p.66Chapter 3.3.2.2 --- The Surface Impedance of a Thin Lossy Dielectric Slab --- p.67Chapter 3.3.2.3 --- The Surface Impedance of a Three-layered Half Space --- p.69Chapter 3.3.2.4 --- The Surface Impedance of the Sidewall of a Train in a Tunnel --- p.70Chapter 3.3.3 --- The Hertz Vectors for Railway Tunnels --- p.71Chapter 3.3.4 --- The Propagation Modal Equations for Railway Tunnels --- p.73Chapter 3.3.5 --- The Propagation Characteristics of Railway Tunnels --- p.76Chapter 3.3.6 --- Propagation Numerical Results in Railway Tunnels --- p.78Chapter 3.4 --- Propagation in Mine Tunnels --- p.84Chapter 3.4.1 --- The Imperfect periodically Loaded Rectangular Waveguide Model --- p.85Chapter 3.4.2 --- The Hertz Vectors for Mine Tunnels --- p.86Chapter 3.4.3 --- The Propagation modal Equations for Mine Tunnels --- p.88Chapter 3.4.4 --- The Propagation Characteristics of Mine Tunnels --- p.95Chapter 3.4.5 --- Propagation Numerical Results in Mine Tunnels --- p.96Chapter 3.5 --- Summary --- p.97Chapter 4 --- Statistical and Deterministic Models of Tunnel UHF Propagation --- p.100Chapter 4.1 --- Introduction --- p.100Chapter 4.2 --- Statistical Model of Tunnel UHF Propagation --- p.100Chapter 4.2.1 --- Experiments --- p.101Chapter 4.2.1.1 --- Experimental Set-ups --- p.102Chapter 4.2.1.2 --- Experimental Tunnels --- p.104Chapter 4.2.1.3 --- Experimental Techniques --- p.106Chapter 4.2.2 --- Statistical Parameters --- p.109Chapter 4.2.2.1 --- Parameters to Characterize Narrow Band Radio Propagation Channels --- p.109Chapter 4.2.2.2 --- Parameters to Characterize Wide Band Radio Propagation Channels --- p.111Chapter 4.2.3 --- Propagation Statistical Results and Discussion --- p.112Chapter 4.2.3.1 --- Tunnel Narrow Band Radio Propagation Characteristics --- p.112Chapter 4.2.3.1.1 --- Power Distance Law --- p.114Chapter 4.2.3.1.2 --- The Slow Fading Statistics --- p.120Chapter 4.2.3.1.3 --- The Fast Fading Statistics --- p.122Chapter 4.2.3.2 --- Tunnel Wide Band Radio Propagation Characteristics --- p.125Chapter 4.2.3.2.1 --- RMS Delay Spread --- p.126Chapter 4.2.3.2.2 --- RMS Delay Spread Statistics --- p.130Chapter 4.3 --- Deterministic Model of Tunnel UHF Propagation --- p.132Chapter 4.3.1 --- The Tunnel Geometrical Optical Propagation Model --- p.134Chapter 4.3.2 --- The Tunnel Impedance Uniform Diffracted Propagation Model --- p.141Chapter 4.3.2.1 --- Determination of Diffraction Points --- p.146Chapter 4.3.2.2 --- Diffraction Coefficients for Impedance Wedges --- p.147Chapter 4.3.3 --- Comparison with Measurements --- p.151Chapter 4.3.3.1 --- Narrow Band Comparison of Simulated and Measured Results --- p.151Chapter 4.3.3.1.1 --- Narrow Band Propagation in Empty Straight Tunnels --- p.151Chapter 4.3.3.1.2 --- Narrow Band Propagation in Curved or Obstructed Tunnels --- p.154Chapter 4.3.3.2 --- Wide Band Comparison of Simulated and Measured Results --- p.158Chapter 4.3.3.2.1 --- Wide Band Propagation in Empty Straight Tunnels --- p.159Chapter 4.3.3.2.2 --- Wide Band Propagation in an Obstructed Tunnel --- p.163Chapter 4.4 --- Summary --- p.165Chapter 5 --- Propagation in Tunnel and Open Air Transition Region --- p.170Chapter 5.1 --- Introduction --- p.170Chapter 5.2 --- Radiation of Radio Waves from a Rectangular Tunnel into Open Air --- p.171Chapter 5.2.1 --- Radiation Formulation Using Equivalent Current Source Concept --- p.171Chapter 5.2.2 --- Radiation Numerical Results --- p.175Chapter 5.3 --- Propagation Characteristics of UHF Radio Waves in Cuttings --- p.177Chapter 5.3.1 --- The Attenuation Constant due to the Absorption --- p.178Chapter 5.3.2 --- The Attenuation Constant due to the Roughness of the Sidewalls --- p.182Chapter 5.3.3 --- The Attenuation Constant due to the tilts of the Sidewalls --- p.183Chapter 5.3.4 --- Propagation Numerical Results in Cuttings --- p.184Chapter 5.4 --- Summary --- p.187Chapter 6 --- Conclusion and Recommendation for Future Work --- p.189APPENDIX --- p.193The Approximate Solution of a Transcendental Equation --- p.193REFERENCES --- p.19
    corecore