3 research outputs found

    Time Allocation of a Set of Radars in a Multitarget Environment

    Get PDF
    International audienceThe question tackled here is the time allocation of radars in a multitarget environment. At a given time radars can only observe a limited part of the space; it is therefore necessary to move their axis with respect to time, in order to be able to explore the overall space facing them. Such sensors are used to detect, to locate and to identify targets which are in their surrounding aerial space. In this paper we focus on the detection schema when several targets need to be detected by a set of delocalized radars. This work is based on the modelling of the radar detection performances in terms of probability of detection and on the optimization of a criterion based on detection probabilities. This optimization leads to the derivation of allocation strategies and is made for several contexts and several hypotheses about the targets locations

    Optimal Policies Search for Sensor Management

    No full text
    International audienceThis paper introduces a new approach to solve sensor management problems. Classically sensor management problems can be well formalized as Partially-Observed Markov Decision Processes (POMPD). The original approach developped here consists in deriving the optimal parameterized policy based on a stochastic gradient estimation. We assume in this work that it is possible to learn the optimal policy off-line (in simulation ) using models of the environement and of the sensor(s). The learned policy can then be used to manage the sensor(s). In order to approximate the gradient in a stochastic context, we introduce a new method to approximate the gradient, based on Infinitesimal Perturbation Approximation (IPA). The effectiveness of this general framework is illustrated by the managing of an Electronically Scanned Array Radar. First simulations results are finally proposed

    Time Allocation of a Set of Radars in a Multitarget Environment

    No full text
    Abstract — The question tackled here is the time allocation of radars in a multitarget environment. At a given time radars can only observe a limited part of the space; it is therefore necessary to move their axis with respect to time, in order to be able to explore the overall space facing them. Such sensors are used to detect, to locate and to identify targets which are in their surrounding aerial space. In this paper we focus on the detection schema when several targets need to be detected by a set of delocalized radars. This work is based on the modelling of the radar detection performances in terms of probability of detection and on the optimization of a criterion based on detection probabilities. This optimization leads to the derivation of allocation strategies and is made for several contexts and several hypotheses about the targets locations
    corecore