191,818 research outputs found

    Context-Aware Modeling Using Semantic Web and Z Notation

    Get PDF
    Surveys in user context modeling have shown that the semantic web is one of the promising approach to represent and structure the contextual information captured from user’s surrounding environment in a context-aware application. A benefit of using semantic web language is that it enables application to reason user contextual information in order to get the knowledge of user’s behavior. However, regarding its notation format, semantic web is suitable for implementation level or to be consumed by application run-time. Context-aware application is a part of distributed computing system. In distributed computing system, the language used for specification should be distinguished from the implementation / run-time purpose. This is known as separation of modeling language. Regarding the context-aware application, for those who are concerned with specification of context modeling, the language that is used for specification should also be distinguished from the implementation one. This thesis aims at proposing the use of formal specification technique to develop a generic context ontology model of user’s behavior at the Computer and Information Sciences Department, Universiti Teknologi PETRONAS. Initially, the context ontology was written in OWL semantic web language. The further process is mapping onto a formal specification language, i.e. onto Z notation. As a result, specification of context ontology and its consistency checking have been developed and verified beyond the semantic web language environment. An inconsistency of context model has been detected during the verification of Z model, which cannot be revealed by current OWL DL reasoner. The context-aware designers might benefit from the formal specification of context ontology, where the designers could fully use formal verification technique to check the correctness of context ontology. Thus, the modeling approach in this thesis has shown that it could complement the context ontology development process, where the checking and refinement are performed beyond the semantic web reasone

    Recurrent Scene Parsing with Perspective Understanding in the Loop

    Full text link
    Objects may appear at arbitrary scales in perspective images of a scene, posing a challenge for recognition systems that process images at a fixed resolution. We propose a depth-aware gating module that adaptively selects the pooling field size in a convolutional network architecture according to the object scale (inversely proportional to the depth) so that small details are preserved for distant objects while larger receptive fields are used for those nearby. The depth gating signal is provided by stereo disparity or estimated directly from monocular input. We integrate this depth-aware gating into a recurrent convolutional neural network to perform semantic segmentation. Our recurrent module iteratively refines the segmentation results, leveraging the depth and semantic predictions from the previous iterations. Through extensive experiments on four popular large-scale RGB-D datasets, we demonstrate this approach achieves competitive semantic segmentation performance with a model which is substantially more compact. We carry out extensive analysis of this architecture including variants that operate on monocular RGB but use depth as side-information during training, unsupervised gating as a generic attentional mechanism, and multi-resolution gating. We find that gated pooling for joint semantic segmentation and depth yields state-of-the-art results for quantitative monocular depth estimation

    iPose: Instance-Aware 6D Pose Estimation of Partly Occluded Objects

    Full text link
    We address the task of 6D pose estimation of known rigid objects from single input images in scenarios where the objects are partly occluded. Recent RGB-D-based methods are robust to moderate degrees of occlusion. For RGB inputs, no previous method works well for partly occluded objects. Our main contribution is to present the first deep learning-based system that estimates accurate poses for partly occluded objects from RGB-D and RGB input. We achieve this with a new instance-aware pipeline that decomposes 6D object pose estimation into a sequence of simpler steps, where each step removes specific aspects of the problem. The first step localizes all known objects in the image using an instance segmentation network, and hence eliminates surrounding clutter and occluders. The second step densely maps pixels to 3D object surface positions, so called object coordinates, using an encoder-decoder network, and hence eliminates object appearance. The third, and final, step predicts the 6D pose using geometric optimization. We demonstrate that we significantly outperform the state-of-the-art for pose estimation of partly occluded objects for both RGB and RGB-D input

    Domain Objects and Microservices for Systems Development: a roadmap

    Full text link
    This paper discusses a roadmap to investigate Domain Objects being an adequate formalism to capture the peculiarity of microservice architecture, and to support Software development since the early stages. It provides a survey of both Microservices and Domain Objects, and it discusses plans and reflections on how to investigate whether a modeling approach suited to adaptable service-based components can also be applied with success to the microservice scenario
    • …
    corecore