432 research outputs found

    Combinatorial Space Tiling

    Full text link
    The present article studies combinatorial tilings of Euclidean or spherical spaces by polytopes, serving two main purposes: first, to survey some of the main developments in combinatorial space tiling; and second, to highlight some new and some old open problems in this area.Comment: 16 pages; to appear in "Symmetry: Culture and Science

    Multipole analysis in cosmic topology

    Full text link
    Low multipole amplitudes in the Cosmic Microwave Background CMB radiation can be explained by selection rules from the underlying multiply-connected homotopy. We apply a multipole analysis to the harmonic bases and introduce point symmetry.We give explicit results for two cubic 3-spherical manifolds and lowest polynomial degrees, and derive three new spherical 3-manifolds.Comment: 15 pages, with figure

    Spherical Orbifolds for Cosmic Topology

    Full text link
    Harmonic analysis is a tool to infer cosmic topology from the measured astrophysical cosmic microwave background CMB radiation. For overall positive curvature, Platonic spherical manifolds are candidates for this analysis. We combine the specific point symmetry of the Platonic manifolds with their deck transformations. This analysis in topology leads from manifolds to orbifolds. We discuss the deck transformations of the orbifolds and give eigenmodes for the harmonic analysis as linear combinations of Wigner polynomials on the 3-sphere. These provide new tools for detecting cosmic topology from the CMB radiation.Comment: 17 pages, 9 figures. arXiv admin note: substantial text overlap with arXiv:1011.427

    Basic Understanding of Condensed Phases of Matter via Packing Models

    Full text link
    Packing problems have been a source of fascination for millenia and their study has produced a rich literature that spans numerous disciplines. Investigations of hard-particle packing models have provided basic insights into the structure and bulk properties of condensed phases of matter, including low-temperature states (e.g., molecular and colloidal liquids, crystals and glasses), multiphase heterogeneous media, granular media, and biological systems. The densest packings are of great interest in pure mathematics, including discrete geometry and number theory. This perspective reviews pertinent theoretical and computational literature concerning the equilibrium, metastable and nonequilibrium packings of hard-particle packings in various Euclidean space dimensions. In the case of jammed packings, emphasis will be placed on the "geometric-structure" approach, which provides a powerful and unified means to quantitatively characterize individual packings via jamming categories and "order" maps. It incorporates extremal jammed states, including the densest packings, maximally random jammed states, and lowest-density jammed structures. Packings of identical spheres, spheres with a size distribution, and nonspherical particles are also surveyed. We close this review by identifying challenges and open questions for future research.Comment: 33 pages, 20 figures, Invited "Perspective" submitted to the Journal of Chemical Physics. arXiv admin note: text overlap with arXiv:1008.298
    • …
    corecore