6 research outputs found

    Clifford Algebra-Based Iterated Extended Kalman Filter with Application to Low-Cost INS/GNSS Navigation

    Full text link
    The traditional GNSS-aided inertial navigation system (INS) usually exploits the extended Kalman filter (EKF) for state estimation, and the initial attitude accuracy is key to the filtering performance. To spare the reliance on the initial attitude, this work generalizes the previously proposed trident quaternion within the framework of Clifford algebra to represent the extended pose, IMU biases and lever arms on the Lie group. Consequently, a quasi-group-affine system is established for the low-cost INS/GNSS integrated navigation system, and the right-error Clifford algebra-based EKF (Clifford-RQEKF) is accordingly developed. The iterated filtering approach is further applied to significantly improve the performances of the Clifford-RQEKF and the previously proposed trident quaternion-based EKFs. Numerical simulations and experiments show that all iterated filtering approaches fulfill the fast and global convergence without the prior attitude information, whereas the iterated Clifford-RQEKF performs much better than the others under especially large IMU biases

    Tightly coupled GNSS/INS integration via factor graph and aided by fish-eye camera

    No full text
    201911 bcrcAccepted ManuscriptPublishe

    3D LiDAR Aided GNSS NLOS Mitigation for Reliable GNSS-RTK Positioning in Urban Canyons

    Full text link
    GNSS and LiDAR odometry are complementary as they provide absolute and relative positioning, respectively. Their integration in a loosely-coupled manner is straightforward but is challenged in urban canyons due to the GNSS signal reflections. Recent proposed 3D LiDAR-aided (3DLA) GNSS methods employ the point cloud map to identify the non-line-of-sight (NLOS) reception of GNSS signals. This facilitates the GNSS receiver to obtain improved urban positioning but not achieve a sub-meter level. GNSS real-time kinematics (RTK) uses carrier phase measurements to obtain decimeter-level positioning. In urban areas, the GNSS RTK is not only challenged by multipath and NLOS-affected measurement but also suffers from signal blockage by the building. The latter will impose a challenge in solving the ambiguity within the carrier phase measurements. In the other words, the model observability of the ambiguity resolution (AR) is greatly decreased. This paper proposes to generate virtual satellite (VS) measurements using the selected LiDAR landmarks from the accumulated 3D point cloud maps (PCM). These LiDAR-PCM-made VS measurements are tightly-coupled with GNSS pseudorange and carrier phase measurements. Thus, the VS measurements can provide complementary constraints, meaning providing low-elevation-angle measurements in the across-street directions. The implementation is done using factor graph optimization to solve an accurate float solution of the ambiguity before it is fed into LAMBDA. The effectiveness of the proposed method has been validated by the evaluation conducted on our recently open-sourced challenging dataset, UrbanNav. The result shows the fix rate of the proposed 3DLA GNSS RTK is about 30% while the conventional GNSS-RTK only achieves about 14%. In addition, the proposed method achieves sub-meter positioning accuracy in most of the data collected in challenging urban areas

    Seamless fusion: multi-modal localization for first responders in challenging environments

    Get PDF
    In dynamic and unpredictable environments, the precise localization of first responders and rescuers is crucial for effective incident response. This paper introduces a novel approach leveraging three complementary localization modalities: visual-based, Galileo-based, and inertial-based. Each modality contributes uniquely to the final Fusion tool, facilitating seamless indoor and outdoor localization, offering a robust and accurate localization solution without reliance on pre-existing infrastructure, essential for maintaining responder safety and optimizing operational effectiveness. The visual-based localization method utilizes an RGB camera coupled with a modified implementation of the ORB-SLAM2 method, enabling operation with or without prior area scanning. The Galileo-based localization method employs a lightweight prototype equipped with a high-accuracy GNSS receiver board, tailored to meet the specific needs of first responders. The inertial-based localization method utilizes sensor fusion, primarily leveraging smartphone inertial measurement units, to predict and adjust first responders’ positions incrementally, compensating for the GPS signal attenuation indoors. A comprehensive validation test involving various environmental conditions was carried out to demonstrate the efficacy of the proposed fused localization tool. Our results show that our proposed solution always provides a location regardless of the conditions (indoors, outdoors, etc.), with an overall mean error of 1.73 m
    corecore