13,986 research outputs found

    Upper and lower bounds for dynamic data structures on strings

    Get PDF
    We consider a range of simply stated dynamic data structure problems on strings. An update changes one symbol in the input and a query asks us to compute some function of the pattern of length mm and a substring of a longer text. We give both conditional and unconditional lower bounds for variants of exact matching with wildcards, inner product, and Hamming distance computation via a sequence of reductions. As an example, we show that there does not exist an O(m1/2ε)O(m^{1/2-\varepsilon}) time algorithm for a large range of these problems unless the online Boolean matrix-vector multiplication conjecture is false. We also provide nearly matching upper bounds for most of the problems we consider.Comment: Accepted at STACS'1

    The Geometry of Differential Privacy: the Sparse and Approximate Cases

    Full text link
    In this work, we study trade-offs between accuracy and privacy in the context of linear queries over histograms. This is a rich class of queries that includes contingency tables and range queries, and has been a focus of a long line of work. For a set of dd linear queries over a database xRNx \in \R^N, we seek to find the differentially private mechanism that has the minimum mean squared error. For pure differential privacy, an O(log2d)O(\log^2 d) approximation to the optimal mechanism is known. Our first contribution is to give an O(log2d)O(\log^2 d) approximation guarantee for the case of (\eps,\delta)-differential privacy. Our mechanism is simple, efficient and adds correlated Gaussian noise to the answers. We prove its approximation guarantee relative to the hereditary discrepancy lower bound of Muthukrishnan and Nikolov, using tools from convex geometry. We next consider this question in the case when the number of queries exceeds the number of individuals in the database, i.e. when d>nx1d > n \triangleq \|x\|_1. It is known that better mechanisms exist in this setting. Our second main contribution is to give an (\eps,\delta)-differentially private mechanism which is optimal up to a \polylog(d,N) factor for any given query set AA and any given upper bound nn on x1\|x\|_1. This approximation is achieved by coupling the Gaussian noise addition approach with a linear regression step. We give an analogous result for the \eps-differential privacy setting. We also improve on the mean squared error upper bound for answering counting queries on a database of size nn by Blum, Ligett, and Roth, and match the lower bound implied by the work of Dinur and Nissim up to logarithmic factors. The connection between hereditary discrepancy and the privacy mechanism enables us to derive the first polylogarithmic approximation to the hereditary discrepancy of a matrix AA

    Linear and Range Counting under Metric-based Local Differential Privacy

    Full text link
    Local differential privacy (LDP) enables private data sharing and analytics without the need for a trusted data collector. Error-optimal primitives (for, e.g., estimating means and item frequencies) under LDP have been well studied. For analytical tasks such as range queries, however, the best known error bound is dependent on the domain size of private data, which is potentially prohibitive. This deficiency is inherent as LDP protects the same level of indistinguishability between any pair of private data values for each data downer. In this paper, we utilize an extension of ϵ\epsilon-LDP called Metric-LDP or EE-LDP, where a metric EE defines heterogeneous privacy guarantees for different pairs of private data values and thus provides a more flexible knob than ϵ\epsilon does to relax LDP and tune utility-privacy trade-offs. We show that, under such privacy relaxations, for analytical workloads such as linear counting, multi-dimensional range counting queries, and quantile queries, we can achieve significant gains in utility. In particular, for range queries under EE-LDP where the metric EE is the L1L^1-distance function scaled by ϵ\epsilon, we design mechanisms with errors independent on the domain sizes; instead, their errors depend on the metric EE, which specifies in what granularity the private data is protected. We believe that the primitives we design for EE-LDP will be useful in developing mechanisms for other analytical tasks, and encourage the adoption of LDP in practice
    corecore