254 research outputs found

    Tiny Codes for Guaranteeable Delay

    Full text link
    Future 5G systems will need to support ultra-reliable low-latency communications scenarios. From a latency-reliability viewpoint, it is inefficient to rely on average utility-based system design. Therefore, we introduce the notion of guaranteeable delay which is the average delay plus three standard deviations of the mean. We investigate the trade-off between guaranteeable delay and throughput for point-to-point wireless erasure links with unreliable and delayed feedback, by bringing together signal flow techniques to the area of coding. We use tiny codes, i.e. sliding window by coding with just 2 packets, and design three variations of selective-repeat ARQ protocols, by building on the baseline scheme, i.e. uncoded ARQ, developed by Ausavapattanakun and Nosratinia: (i) Hybrid ARQ with soft combining at the receiver; (ii) cumulative feedback-based ARQ without rate adaptation; and (iii) Coded ARQ with rate adaptation based on the cumulative feedback. Contrasting the performance of these protocols with uncoded ARQ, we demonstrate that HARQ performs only slightly better, cumulative feedback-based ARQ does not provide significant throughput while it has better average delay, and Coded ARQ can provide gains up to about 40% in terms of throughput. Coded ARQ also provides delay guarantees, and is robust to various challenges such as imperfect and delayed feedback, burst erasures, and round-trip time fluctuations. This feature may be preferable for meeting the strict end-to-end latency and reliability requirements of future use cases of ultra-reliable low-latency communications in 5G, such as mission-critical communications and industrial control for critical control messaging.Comment: to appear in IEEE JSAC Special Issue on URLLC in Wireless Network

    Enabling Realistic Cross-Layer Analysis based on Satellite Physical Layer Traces

    Get PDF
    We present a solution to evaluate the performance of transport protocols as a function of link layer reliability schemes (i.e. ARQ, FEC and Hybrid ARQ) applied to satellite physical layer traces. As modelling such traces is complex and may require approximations, the use of real traces will minimise the potential for erroneous performance evaluations resulting from imperfect models. Our Trace Manager Tool (TMT) produces the corresponding link layer output, which is then used within the ns-2 network simulator via the additionally developed ns-2 interface module. We first present the analytical models for the link layer with bursty erasure packets and for the link layer reliability mechanisms with bursty erasures. Then, we present details of the TMT tool and our validation methodology, demonstrating that the selected performance metrics (recovery delay and throughput efficiency) exhibit a good match between the theoretical results and those obtained with TMT. Finally, we present results showing the impact of different link layer reliability mechanisms on the performance of TCP Cubic transport layer protocol.Comment: 6 pages, 5 figures and 1 table. Submitted at PIMRC 201

    Backlog and Delay Reasoning in HARQ Systems

    Full text link
    Recently, hybrid-automatic-repeat-request (HARQ) systems have been favored in particular state-of-the-art communications systems since they provide the practicality of error detections and corrections aligned with repeat-requests when needed at receivers. The queueing characteristics of these systems have taken considerable focus since the current technology demands data transmissions with a minimum delay provisioning. In this paper, we investigate the effects of physical layer characteristics on data link layer performance in a general class of HARQ systems. Constructing a state transition model that combines queue activity at a transmitter and decoding efficiency at a receiver, we identify the probability of clearing the queue at the transmitter and the packet-loss probability at the receiver. We determine the effective capacity that yields the maximum feasible data arrival rate at the queue under quality-of-service constraints. In addition, we put forward non-asymptotic backlog and delay bounds. Finally, regarding three different HARQ protocols, namely Type-I HARQ, HARQ-chase combining (HARQ-CC) and HARQ-incremental redundancy (HARQ-IR), we show the superiority of HARQ-IR in delay robustness over the others. However, we further observe that the performance gap between HARQ-CC and HARQ-IR is quite negligible in certain cases. The novelty of our paper is a general cross-layer analysis of these systems, considering encoding/decoding in the physical layer and delay aspects in the data-link layer

    Access Policy Design for Cognitive Secondary Users under a Primary Type-I HARQ Process

    Full text link
    In this paper, an underlay cognitive radio network that consists of an arbitrary number of secondary users (SU) is considered, in which the primary user (PU) employs Type-I Hybrid Automatic Repeat Request (HARQ). Exploiting the redundancy in PU retransmissions, each SU receiver applies forward interference cancelation to remove a successfully decoded PU message in the subsequent PU retransmissions. The knowledge of the PU message state at the SU receivers and the ACK/NACK message from the PU receiver are sent back to the transmitters. With this approach and using a Constrained Markov Decision Process (CMDP) model and Constrained Multi-agent MDP (CMMDP), centralized and decentralized optimum access policies for SUs are proposed to maximize their average sum throughput under a PU throughput constraint. In the decentralized case, the channel access decision of each SU is unknown to the other SU. Numerical results demonstrate the benefits of the proposed policies in terms of sum throughput of SUs. The results also reveal that the centralized access policy design outperforms the decentralized design especially when the PU can tolerate a low average long term throughput. Finally, the difficulties in decentralized access policy design with partial state information are discussed

    Enabling Realistic Cross-Layer Analysis based on Satellite Physical Layer Traces

    Get PDF
    We present a solution to evaluate the performance of transport protocols as a function of link layer reliability schemes (i.e. ARQ, FEC and Hybrid ARQ) applied to satellite physical layer traces. As modelling such traces is complex and may require approximations, the use of real traces will minimise the potential for erroneous performance evaluations resulting from imperfect models. Our Trace Manager Tool (TMT) produces the corresponding link layer output, which is then used within the ns-2 network simulator via the additionally developed ns-2 interface module. We first present the analytical models for the link layer with bursty erasure packets and for the link layer reliability mechanisms with bursty erasures. Then, we present details of the TMT tool and our validation methodology, demonstrating that the selected performance metrics (recovery delay and throughput efficiency) exhibit a good match between the theoretical results and those obtained with TMT. Finally, we present results showing the impact of different link layer reliability mechanisms on the performance of TCP Cubic transport layer protocol
    corecore