399 research outputs found

    The Challenges in SDN/ML Based Network Security : A Survey

    Full text link
    Machine Learning is gaining popularity in the network security domain as many more network-enabled devices get connected, as malicious activities become stealthier, and as new technologies like Software Defined Networking (SDN) emerge. Sitting at the application layer and communicating with the control layer, machine learning based SDN security models exercise a huge influence on the routing/switching of the entire SDN. Compromising the models is consequently a very desirable goal. Previous surveys have been done on either adversarial machine learning or the general vulnerabilities of SDNs but not both. Through examination of the latest ML-based SDN security applications and a good look at ML/SDN specific vulnerabilities accompanied by common attack methods on ML, this paper serves as a unique survey, making a case for more secure development processes of ML-based SDN security applications.Comment: 8 pages. arXiv admin note: substantial text overlap with arXiv:1705.0056

    Multipath Routing in VANET: Multi-Agent based Approach

    Get PDF
    In VANET routing of data is a exciting task owing to the high dynamics involved in this network. Delivery of data to the projected destination turns out to be very puzzling. Single path routing suffers from drawbacks like unreliability and etc. To manage such situation multipath data delivery is very nominal. In multipath routing more than one path discovered between source and destination node. Data packet can be sent simultaneously in all paths or data packet can be send by selecting path one after another. It is up to the routing algorithm to select path thoughtfully to deliver data proficiently. However existing multipath routing protocols even though compute multipath, only one path will be engaged in actual communication at any given time. Hence this work proposes Multipath Routing in VANET: Multi-agent based Approach which calculates multiple paths amongst source and destination. Further, all such computed paths will be employed for information dissemination. NS2 simulation of the proposed approach in realistic mobility models show that it can select more stable link and improve the network performance

    A Survey on UAV-enabled Edge Computing: Resource Management Perspective

    Full text link
    Edge computing facilitates low-latency services at the network's edge by distributing computation, communication, and storage resources within the geographic proximity of mobile and Internet-of-Things (IoT) devices. The recent advancement in Unmanned Aerial Vehicles (UAVs) technologies has opened new opportunities for edge computing in military operations, disaster response, or remote areas where traditional terrestrial networks are limited or unavailable. In such environments, UAVs can be deployed as aerial edge servers or relays to facilitate edge computing services. This form of computing is also known as UAV-enabled Edge Computing (UEC), which offers several unique benefits such as mobility, line-of-sight, flexibility, computational capability, and cost-efficiency. However, the resources on UAVs, edge servers, and IoT devices are typically very limited in the context of UEC. Efficient resource management is, therefore, a critical research challenge in UEC. In this article, we present a survey on the existing research in UEC from the resource management perspective. We identify a conceptual architecture, different types of collaborations, wireless communication models, research directions, key techniques and performance indicators for resource management in UEC. We also present a taxonomy of resource management in UEC. Finally, we identify and discuss some open research challenges that can stimulate future research directions for resource management in UEC.Comment: 36 pages, Accepted to ACM CSU

    Energy Saving in QoS Fog-supported Data Centers

    Get PDF
    One of the most important challenges that cloud providers face in the explosive growth of data is to reduce the energy consumption of their designed, modern data centers. The majority of current research focuses on energy-efficient resources management in the infrastructure as a service (IaaS) model through "resources virtualization" - virtual machines and physical machines consolidation. However, actual virtualized data centers are not supporting communication–computing intensive real-time applications, big data stream computing (info-mobility applications, real-time video co-decoding). Indeed, imposing hard-limits on the overall per-job computing-plus-communication delays forces the overall networked computing infrastructure to quickly adopt its resource utilization to the (possibly, unpredictable and abrupt) time fluctuations of the offered workload. Recently, Fog Computing centers are as promising commodities in Internet virtual computing platform that raising the energy consumption and making the critical issues on such platform. Therefore, it is expected to present some green solutions (i.e., support energy provisioning) that cover fog-supported delay-sensitive web applications. Moreover, the usage of traffic engineering-based methods dynamically keep up the number of active servers to match the current workload. Therefore, it is desirable to develop a flexible, reliable technological paradigm and resource allocation algorithm to pay attention the consumed energy. Furthermore, these algorithms could automatically adapt themselves to time-varying workloads, joint reconfiguration, and orchestration of the virtualized computing-plus-communication resources available at the computing nodes. Besides, these methods facilitate things devices to operate under real-time constraints on the allowed computing-plus-communication delay and service latency. The purpose of this thesis is: i) to propose a novel technological paradigm, the Fog of Everything (FoE) paradigm, where we detail the main building blocks and services of the corresponding technological platform and protocol stack; ii) propose a dynamic and adaptive energy-aware algorithm that models and manages virtualized networked data centers Fog Nodes (FNs), to minimize the resulting networking-plus-computing average energy consumption; and, iii) propose a novel Software-as-a-Service (SaaS) Fog Computing platform to integrate the user applications over the FoE. The emerging utilization of SaaS Fog Computing centers as an Internet virtual computing commodity is to support delay-sensitive applications. The main blocks of the virtualized Fog node, operating at the Middleware layer of the underlying protocol stack and comprises of: i) admission control of the offered input traffic; ii) balanced control and dispatching of the admitted workload; iii) dynamic reconfiguration and consolidation of the Dynamic Voltage and Frequency Scaling (DVFS)-enabled Virtual Machines (VMs) instantiated onto the parallel computing platform; and, iv) rate control of the traffic injected into the TCP/IP connection. The salient features of this algorithm are that: i) it is adaptive and admits distributed scalable implementation; ii) it has the capacity to provide hard QoS guarantees, in terms of minimum/maximum instantaneous rate of the traffic delivered to the client, instantaneous goodput and total processing delay; and, iii) it explicitly accounts for the dynamic interaction between computing and networking resources in order to maximize the resulting energy efficiency. Actual performance of the proposed scheduler in the presence of: i) client mobility; ii) wireless fading; iii) reconfiguration and two-thresholds consolidation costs of the underlying networked computing platform; and, iv) abrupt changes of the transport quality of the available TCP/IP mobile connection, is numerically tested and compared to the corresponding ones of some state-of-the-art static schedulers, under both synthetically generated and measured real-world workload traces
    • …
    corecore