8,749 research outputs found
On the Experimental Evaluation of Vehicular Networks: Issues, Requirements and Methodology Applied to a Real Use Case
One of the most challenging fields in vehicular communications has been the
experimental assessment of protocols and novel technologies. Researchers
usually tend to simulate vehicular scenarios and/or partially validate new
contributions in the area by using constrained testbeds and carrying out minor
tests. In this line, the present work reviews the issues that pioneers in the
area of vehicular communications and, in general, in telematics, have to deal
with if they want to perform a good evaluation campaign by real testing. The
key needs for a good experimental evaluation is the use of proper software
tools for gathering testing data, post-processing and generating relevant
figures of merit and, finally, properly showing the most important results. For
this reason, a key contribution of this paper is the presentation of an
evaluation environment called AnaVANET, which covers the previous needs. By
using this tool and presenting a reference case of study, a generic testing
methodology is described and applied. This way, the usage of the IPv6 protocol
over a vehicle-to-vehicle routing protocol, and supporting IETF-based network
mobility, is tested at the same time the main features of the AnaVANET system
are presented. This work contributes in laying the foundations for a proper
experimental evaluation of vehicular networks and will be useful for many
researchers in the area.Comment: in EAI Endorsed Transactions on Industrial Networks and Intelligent
  Systems, 201
Soft-Defined Heterogeneous Vehicular Network: Architecture and Challenges
Heterogeneous Vehicular NETworks (HetVNETs) can meet various
quality-of-service (QoS) requirements for intelligent transport system (ITS)
services by integrating different access networks coherently. However, the
current network architecture for HetVNET cannot efficiently deal with the
increasing demands of rapidly changing network landscape. Thanks to the
centralization and flexibility of the cloud radio access network (Cloud-RAN),
soft-defined networking (SDN) can conveniently be applied to support the
dynamic nature of future HetVNET functions and various applications while
reducing the operating costs. In this paper, we first propose the multi-layer
Cloud RAN architecture for implementing the new network, where the multi-domain
resources can be exploited as needed for vehicle users. Then, the high-level
design of soft-defined HetVNET is presented in detail. Finally, we briefly
discuss key challenges and solutions for this new network, corroborating its
feasibility in the emerging fifth-generation (5G) era
V2X Content Distribution Based on Batched Network Coding with Distributed Scheduling
Content distribution is an application in intelligent transportation system
to assist vehicles in acquiring information such as digital maps and
entertainment materials. In this paper, we consider content distribution from a
single roadside infrastructure unit to a group of vehicles passing by it. To
combat the short connection time and the lossy channel quality, the downloaded
contents need to be further shared among vehicles after the initial
broadcasting phase. To this end, we propose a joint infrastructure-to-vehicle
(I2V) and vehicle-to-vehicle (V2V) communication scheme based on batched sparse
(BATS) coding to minimize the traffic overhead and reduce the total
transmission delay. In the I2V phase, the roadside unit (RSU) encodes the
original large-size file into a number of batches in a rateless manner, each
containing a fixed number of coded packets, and sequentially broadcasts them
during the I2V connection time. In the V2V phase, vehicles perform the network
coded cooperative sharing by re-encoding the received packets. We propose a
utility-based distributed algorithm to efficiently schedule the V2V cooperative
transmissions, hence reducing the transmission delay. A closed-form expression
for the expected rank distribution of the proposed content distribution scheme
is derived, which is used to design the optimal BATS code. The performance of
the proposed content distribution scheme is evaluated by extensive simulations
that consider multi-lane road and realistic vehicular traffic settings, and
shown to significantly outperform the existing content distribution protocols.Comment: 12 pages and 9 figure
Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks
Conventional cellular wireless networks were designed with the purpose of
providing high throughput for the user and high capacity for the service
provider, without any provisions of energy efficiency. As a result, these
networks have an enormous Carbon footprint. In this paper, we describe the
sources of the inefficiencies in such networks. First we present results of the
studies on how much Carbon footprint such networks generate. We also discuss
how much more mobile traffic is expected to increase so that this Carbon
footprint will even increase tremendously more. We then discuss specific
sources of inefficiency and potential sources of improvement at the physical
layer as well as at higher layers of the communication protocol hierarchy. In
particular, considering that most of the energy inefficiency in cellular
wireless networks is at the base stations, we discuss multi-tier networks and
point to the potential of exploiting mobility patterns in order to use base
station energy judiciously. We then investigate potential methods to reduce
this inefficiency and quantify their individual contributions. By a
consideration of the combination of all potential gains, we conclude that an
improvement in energy consumption in cellular wireless networks by two orders
of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843
Routing And Communication Path Mapping In VANETS
Vehicular ad-hoc network (VANET) has quickly become an important aspect of the intelligent transport system (ITS), which is a combination of information technology, and transport works to improve efficiency and safety through data gathering and dissemination. However, transmitting data over an ad-hoc network comes with several issues such as broadcast storms, hidden terminal problems and unreliability; these greatly reduce the efficiency of the network and hence the purpose for which it was developed. We therefore propose a system of utilising information gathered externally from the node or through the various layers of the network into the access layer of the ETSI communication stack for routing to improve the overall efficiency of data delivery, reduce hidden terminals and increase reliability. We divide route into segments and design a set of metric system to select a controlling node as well as procedure for data transfer. Furthermore we propose a system for faster data delivery based on priority of data and density of nodes from route information while developing a map to show the communication situation of an area. These metrics and algorithms will be simulated in further research using the NS-3 environment to demonstrate the effectiveness
Research on Wireless Multi-hop Networks: Current State and Challenges
Wireless multi-hop networks, in various forms and under various names, are
being increasingly used in military and civilian applications. Studying
connectivity and capacity of these networks is an important problem. The
scaling behavior of connectivity and capacity when the network becomes
sufficiently large is of particular interest. In this position paper, we
briefly overview recent development and discuss research challenges and
opportunities in the area, with a focus on the network connectivity.Comment: invited position paper to International Conference on Computing,
  Networking and Communications, Hawaii, USA, 201
- …
