3,335 research outputs found

    Resource Allocation and Fairness in Wireless Powered Cooperative Cognitive Radio Networks

    Full text link
    We integrate a wireless powered communication network with a cooperative cognitive radio network, where multiple secondary users (SUs) powered wirelessly by a hybrid access point (HAP) help a primary user relay the data. As a reward for the cooperation, the secondary network gains the spectrum access where SUs transmit to HAP using time division multiple access. To maximize the sum-throughput of SUs, we present a secondary sum-throughput optimal resource allocation (STORA) scheme. Under the constraint of meeting target primary rate, the STORA scheme chooses the optimal set of relaying SUs and jointly performs the time and energy allocation for SUs. Specifically, by exploiting the structure of the optimal solution, we find the order in which SUs are prioritized to relay primary data. Since the STORA scheme focuses on the sum-throughput, it becomes inconsiderate towards individual SU throughput, resulting in low fairness. To enhance fairness, we investigate three resource allocation schemes, which are (i) equal time allocation, (ii) minimum throughput maximization, and (iii) proportional time allocation. Simulation results reveal the trade-off between sum-throughput and fairness. The minimum throughput maximization scheme is the fairest one as each SU gets the same throughput, but yields the least SU sum-throughput.Comment: Accepted in IEEE Transactions on Communication

    Optimizing City-Wide White-Fi Networks in TV White Spaces

    Full text link
    White-Fi refers to WiFi deployed in the TV white spaces. Unlike its ISM band counterparts, White-Fi must obey requirements that protect TV reception. As a result, optimization of citywide White-Fi networks faces the challenges of heterogeneous channel availability and link quality, over location. The former is because, at any location, channels in use by TV networks are not available for use by White-Fi. The latter is because the link quality achievable at a White-Fi receiver is determined by not only its link gain to its transmitter but also by its link gains to TV transmitters and its transmitter's link gains to TV receivers. In this work, we model the medium access control (MAC) throughput of a White-Fi network. We propose heuristic algorithms to optimize the throughput, given the described heterogeneity. The algorithms assign power, access probability, and channels to nodes in the network, under the constraint that reception at TV receivers is not compromised. We evaluate the efficacy of our approach over example city-wide White-Fi networks deployed over Denver and Columbus (respectively, low and high channel availability) in the USA, and compare with assignments cognizant of heterogeneity to a lesser degree, for example, akin to FCC regulations.Comment: Manuscript accepted for publication in the IEEE Transactions on Cognitive Communications and Networkin

    Cost-Efficient Throughput Maximization in Multi-Carrier Cognitive Radio Systems

    Full text link
    Cognitive radio (CR) systems allow opportunistic, secondary users (SUs) to access portions of the spectrum that are unused by the network's licensed primary users (PUs), provided that the induced interference does not compromise the primary users' performance guarantees. To account for interference constraints of this type, we consider a flexible spectrum access pricing scheme that charges secondary users based on the interference that they cause to the system's primary users (individually, globally, or both), and we examine how secondary users can maximize their achievable transmission rate in this setting. We show that the resulting non-cooperative game admits a unique Nash equilibrium under very mild assumptions on the pricing mechanism employed by the network operator, and under both static and ergodic (fast-fading) channel conditions. In addition, we derive a dynamic power allocation policy that converges to equilibrium within a few iterations (even for large numbers of users), and which relies only on local signal-to-interference-and-noise measurements; importantly, the proposed algorithm retains its convergence properties even in the ergodic channel regime, despite the inherent stochasticity thereof. Our theoretical analysis is complemented by extensive numerical simulations which illustrate the performance and scalability properties of the proposed pricing scheme under realistic network conditions.Comment: 24 pages, 9 figure

    Deep Reinforcement Learning for Time Scheduling in RF-Powered Backscatter Cognitive Radio Networks

    Full text link
    In an RF-powered backscatter cognitive radio network, multiple secondary users communicate with a secondary gateway by backscattering or harvesting energy and actively transmitting their data depending on the primary channel state. To coordinate the transmission of multiple secondary transmitters, the secondary gateway needs to schedule the backscattering time, energy harvesting time, and transmission time among them. However, under the dynamics of the primary channel and the uncertainty of the energy state of the secondary transmitters, it is challenging for the gateway to find a time scheduling mechanism which maximizes the total throughput. In this paper, we propose to use the deep reinforcement learning algorithm to derive an optimal time scheduling policy for the gateway. Specifically, to deal with the problem with large state and action spaces, we adopt a Double Deep-Q Network (DDQN) that enables the gateway to learn the optimal policy. The simulation results clearly show that the proposed deep reinforcement learning algorithm outperforms non-learning schemes in terms of network throughput

    Joint Spectrum Allocation and Structure Optimization in Green Powered Heterogeneous Cognitive Radio Networks

    Full text link
    We aim at maximizing the sum rate of secondary users (SUs) in OFDM-based Heterogeneous Cognitive Radio (CR) Networks using RF energy harvesting. Assuming SUs operate in a time switching fashion, each time slot is partitioned into three non-overlapping parts devoted for energy harvesting, spectrum sensing and data transmission. The general problem of joint resource allocation and structure optimization is formulated as a Mixed Integer Nonlinear Programming task which is NP-hard and intractable. Thus, we propose to tackle it by decomposing it into two subproblems. We first propose a sub-channel allocation scheme to approximately satisfy SUs' rate requirements and remove the integer constraints. For the second step, we prove that the general optimization problem is reduced to a convex optimization task. Considering the trade-off among fractions of each time slot, we focus on optimizing the time slot structures of SUs that maximize the total throughput while guaranteeing the rate requirements of both real-time and non-real-time SUs. Since the reduced optimization problem does not have a simple closed-form solution, we thus propose a near optimal closed-form solution by utilizing Lambert-W function. We also exploit iterative gradient method based on Lagrangian dual decomposition to achieve near optimal solutions. Simulation results are presented to validate the optimality of the proposed schemes

    On Green Energy Powered Cognitive Radio Networks

    Full text link
    Green energy powered cognitive radio (CR) network is capable of liberating the wireless access networks from spectral and energy constraints. The limitation of the spectrum is alleviated by exploiting cognitive networking in which wireless nodes sense and utilize the spare spectrum for data communications, while dependence on the traditional unsustainable energy is assuaged by adopting energy harvesting (EH) through which green energy can be harnessed to power wireless networks. Green energy powered CR increases the network availability and thus extends emerging network applications. Designing green CR networks is challenging. It requires not only the optimization of dynamic spectrum access but also the optimal utilization of green energy. This paper surveys the energy efficient cognitive radio techniques and the optimization of green energy powered wireless networks. Existing works on energy aware spectrum sensing, management, and sharing are investigated in detail. The state of the art of the energy efficient CR based wireless access network is discussed in various aspects such as relay and cooperative radio and small cells. Envisioning green energy as an important energy resource in the future, network performance highly depends on the dynamics of the available spectrum and green energy. As compared with the traditional energy source, the arrival rate of green energy, which highly depends on the environment of the energy harvesters, is rather random and intermittent. To optimize and adapt the usage of green energy according to the opportunistic spectrum availability, we discuss research challenges in designing cognitive radio networks which are powered by energy harvesters

    Session-Based Cooperation in Cognitive Radio Networks: A Network-Level Approach

    Full text link
    In cognitive radio networks (CRNs), secondary users (SUs) can proactively obtain spectrum access opportunities by helping with primary users' (PUs') data transmissions. Currently, such kind of spectrum access is implemented via a cooperative communications based link-level frame-based cooperative (LLC) approach where individual SUs independently serve as relays for PUs in order to gain spectrum access opportunities. Unfortunately, this LLC approach cannot fully exploit spectrum access opportunities to enhance the throughput of CRNs and fails to motivate PUs to join the spectrum sharing processes. To address these challenges, we propose a network-level session-based cooperative (NLC) approach where SUs are grouped together to cooperate with PUs session by session, instead of frame by frame as what has been done in existing works, for spectrum access opportunities of the corresponding group. Thanks to our group-based session-by-session cooperating strategy, our NLC approach is able to address all those challenges in the LLC approach. To articulate our NLC approach, we further develop an NLC scheme under a cognitive capacity harvesting network (CCHN) architecture. We formulate the cooperative mechanism design as a cross-layer optimization problem with constraints on primary session selection, flow routing and link scheduling. To search for solutions to the optimization problem, we propose an augmented scheduling index ordering based (SIO-based) algorithm to identify maximal independent sets. Through extensive simulations, we demonstrate the effectiveness of the proposed NLC approach and the superiority of the augmented SIO-based algorithm over the traditional method

    Throughput Analysis of Wireless Powered Cognitive Radio Networks with Compressive Sensing and Matrix Completion

    Full text link
    In this paper, we consider a cognitive radio network in which energy constrained secondary users (SUs) can harvest energy from the randomly deployed power beacons (PBs). A new frame structure is proposed for the considered network. A wireless power transfer (WPT) model and a compressive spectrum sensing model are introduced. In the WPT model, a new WPT scheme is proposed, and the closed-form expressions for the power outage probability are derived. In compressive spectrum sensing model, two scenarios are considered: 1) Single SU, and 2) Multiple SUs. In the single SU scenario, in order to reduce the energy consumption at the SU, compressive sensing technique which enables sub-Nyquist sampling is utilized. In the multiple SUs scenario, cooperative spectrum sensing (CSS) is performed with adopting low-rank matrix completion technique to obtain the complete matrix at the fusion center. Throughput optimizations of the secondary network are formulated into two linear constrained problems, which aim to maximize the throughput of single SU and the CSS networks, respectively. Three methods are provided to obtain the maximal throughput of secondary network by optimizing the time slots allocation and the transmit power. Simulation results show that: 1) Multiple SUs scenario can achieve lower power outage probability than single SU scenario; and 2) The optimal throughput can be improved by implementing compressive spectrum sensing in the proposed frame structure design.Comment: 11 pages, 8 figure

    A Survey on QoE-oriented Wireless Resources Scheduling

    Full text link
    Future wireless systems are expected to provide a wide range of services to more and more users. Advanced scheduling strategies thus arise not only to perform efficient radio resource management, but also to provide fairness among the users. On the other hand, the users' perceived quality, i.e., Quality of Experience (QoE), is becoming one of the main drivers within the schedulers design. In this context, this paper starts by providing a comprehension of what is QoE and an overview of the evolution of wireless scheduling techniques. Afterwards, a survey on the most recent QoE-based scheduling strategies for wireless systems is presented, highlighting the application/service of the different approaches reported in the literature, as well as the parameters that were taken into account for QoE optimization. Therefore, this paper aims at helping readers interested in learning the basic concepts of QoE-oriented wireless resources scheduling, as well as getting in touch with its current research frontier.Comment: Revised version: updated according to the most recent related literature; added references; corrected typo

    Effective Capacity in Wireless Networks: A Comprehensive Survey

    Full text link
    Low latency applications, such as multimedia communications, autonomous vehicles, and Tactile Internet are the emerging applications for next-generation wireless networks, such as 5th generation (5G) mobile networks. Existing physical-layer channel models, however, do not explicitly consider quality-of-service (QoS) aware related parameters under specific delay constraints. To investigate the performance of low-latency applications in future networks, a new mathematical framework is needed. Effective capacity (EC), which is a link-layer channel model with QoS-awareness, can be used to investigate the performance of wireless networks under certain statistical delay constraints. In this paper, we provide a comprehensive survey on existing works, that use the EC model in various wireless networks. We summarize the work related to EC for different networks such as cognitive radio networks (CRNs), cellular networks, relay networks, adhoc networks, and mesh networks. We explore five case studies encompassing EC operation with different design and architectural requirements. We survey various delay-sensitive applications such as voice and video with their EC analysis under certain delay constraints. We finally present the future research directions with open issues covering EC maximization
    corecore