8,861 research outputs found

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Optimal Real-time Spectrum Sharing between Cooperative Relay and Ad-hoc Networks

    Full text link
    Optimization based spectrum sharing strategies have been widely studied. However, these strategies usually require a great amount of real-time computation and significant signaling delay, and thus are hard to be fulfilled in practical scenarios. This paper investigates optimal real-time spectrum sharing between a cooperative relay network (CRN) and a nearby ad-hoc network. Specifically, we optimize the spectrum access and resource allocation strategies of the CRN so that the average traffic collision time between the two networks can be minimized while maintaining a required throughput for the CRN. The development is first for a frame-level setting, and then is extended to an ergodic setting. For the latter setting, we propose an appealing optimal real-time spectrum sharing strategy via Lagrangian dual optimization. The proposed method only involves a small amount of real-time computation and negligible control delay, and thus is suitable for practical implementations. Simulation results are presented to demonstrate the efficiency of the proposed strategies.Comment: One typo in the caption of Figure 5 is correcte
    • …
    corecore