1,831 research outputs found

    Partially-Distributed Resource Allocation in Small-Cell Networks

    Full text link
    We propose a four-stage hierarchical resource allocation scheme for the downlink of a large-scale small-cell network in the context of orthogonal frequency-division multiple access (OFDMA). Since interference limits the capabilities of such networks, resource allocation and interference management are crucial. However, obtaining the globally optimum resource allocation is exponentially complex and mathematically intractable. Here, we develop a partially decentralized algorithm to obtain an effective solution. The three major advantages of our work are: 1) as opposed to a fixed resource allocation, we consider load demand at each access point (AP) when allocating spectrum; 2) to prevent overloaded APs, our scheme is dynamic in the sense that as the users move from one AP to the other, so do the allocated resources, if necessary, and such considerations generally result in huge computational complexity, which brings us to the third advantage: 3) we tackle complexity by introducing a hierarchical scheme comprising four phases: user association, load estimation, interference management via graph coloring, and scheduling. We provide mathematical analysis for the first three steps modeling the user and AP locations as Poisson point processes. Finally, we provide results of numerical simulations to illustrate the efficacy of our scheme.Comment: Accepted on May 15, 2014 for publication in the IEEE Transactions on Wireless Communication

    Performance Analysis of Arbitrarily-Shaped Underlay Cognitive Networks: Effects of Secondary User Activity Protocols

    Full text link
    This paper analyzes the performance of the primary and secondary users (SUs) in an arbitrarily-shaped underlay cognitive network. In order to meet the interference threshold requirement for a primary receiver (PU-Rx) at an arbitrary location, we consider different SU activity protocols which limit the number of active SUs. We propose a framework, based on the moment generating function (MGF) of the interference due to a random SU, to analytically compute the outage probability in the primary network, as well as the average number of active SUs in the secondary network. We also propose a cooperation-based SU activity protocol in the underlay cognitive network which includes the existing threshold-based protocol as a special case. We study the average number of active SUs for the different SU activity protocols, subject to a given outage probability constraint at the PU and we employ it as an analytical approach to compare the effect of different SU activity protocols on the performance of the primary and secondary networks.Comment: submitted to possible IEEE Transactions publicatio
    • …
    corecore