2 research outputs found

    Temporary Redundant Transmission Mechanism for SCTP Multihomed Hosts

    Get PDF
    In SCTP’s Concurrent Multipath Transfer, if data is sent to the destined IP(s) without knowledge of the paths condition, packets may be lost or delayed. This is because of the bursty nature of IP traffic and physical damage to the network. To offset these problems, network path status is examined using our new mechanism Multipath State Aware Concurrent Multipath Transfer using redundant transmission (MSACMT-RTv2). Here the status of multiple paths is analyzed, initially and periodically thereafter transmitted. After examination, paths priority is assigned before transmission. One path is temporarily employed as redundant path for the failure-expected path (FEP); this redundant path is used for transmitting redundant data. At the end of predefined period, reliability of the FEP is confirmed. If FEP is ensured to be reliable, temporary path is transformed into normal CMT path. MSACMT-RTv2 algorithm is simulated using the Delaware University ns-2 SCTP/CMT module (ns-2; V2.29). We present and discuss MSACMT-RTv2 performance in asymmetric path delay and with finite receiver buffer (rbuf) size. We extended our experiment to test robustness of this algorithm and inferred exhaustive result. It is inferred that our algorithm outperforms better in terms of increasing the throughput and reducing the latency than existing system

    Concurrent Multipath Transfer: Scheduling, Modelling, and Congestion Window Management

    Get PDF
    Known as smartphones, multihomed devices like the iPhone and BlackBerry can simultaneously connect to Wi-Fi and 4G LTE networks. Unfortunately, due to the architectural constraints of standard transport layer protocols like the transmission control protocol (TCP), an Internet application (e.g., a file transfer) can use only one access network at a time. Due to recent developments, however, concurrent multipath transfer (CMT) using the stream control transmission protocol (SCTP) can enable multihomed devices to exploit additional network resources for transport layer communications. In this thesis we explore a variety of techniques aimed at CMT and multihomed devices, such as: packet scheduling, transport layer modelling, and resource management. Some of our accomplishments include, but are not limited to: enhanced performance of CMT under delay-based disparity, a tractable framework for modelling the throughput of CMT, a comparison of modelling techniques for SCTP, a new congestion window update policy for CMT, and efficient use of system resources through optimization. Since the demand for a better communications system is always on the horizon, it is our goal to further the research and inspire others to embrace CMT as a viable network architecture; in hopes that someday CMT will become a standard part of smartphone technology
    corecore