23 research outputs found

    Scanning evanescent wave lithography for sub-22nm generations

    Get PDF
    Current assumptions for the limits of immersion optical lithography include NA values at 1.35, largely based on the lack of high-index materials. In this research we have been working with ultra-high NA evanescent wave lithography (EWL) where the NA of the projection system is allowed to exceed the corresponding acceptance angle of one or more materials of the system. This approach is made possible by frustrating the total internal reflection (TIR) evanescent field into propagation. With photoresist as the frustrating media, the allowable gap for adequate exposure latitude is in the sub-100 nm range. Through static imaging, we have demonstrated the ability to resolve 26 nm half-pitch features at 193 nm and 1.85 NA using existing materials. Such imaging could lead to the attainment of 13 nm half-pitch through double patterning. In addition, a scanning EWL imaging system was designed, prototyped with a two-stage gap control imaging head including a DC noise canceling carrying air-bearing, and a AC noise canceling piezoelectric transducer with real-time closed-loop feedback from gap detection. Various design aspects of the system including gap detection, feedback actuation, prism design and fabrication, software integration, and scanning scheme have been carefully considered to ensure sub-100 nm scanning. Experiments performed showed successful gap gauging at sub-100 nm scanning height. Scanning EWL results using a two-beam interference imaging approach achieved pattern resolution comparable to static EWL imaging results. With this scanning EWL approach and the imaging head developed, optical lithography becomes extendable to sub-22 nm generations

    Design automation algorithms for advanced lithography

    Get PDF
    In circuit manufacturing, as the technology nodes keep shrinking, conventional 193 nm immersion lithography (193i) has reached its printability limit. To continue the scaling with Moore's law, different kinds of advanced lithography have been proposed, such as multiple patterning lithography (MPL), extreme ultraviolet (EUV), electron beam lithography (EBL) and directed self-assembly (DSA). While these new technologies create enormous opportunities, they also pose great design challenges due to their unique process characteristics and stringent constraints. In order to smoothly adopt these advanced lithography technologies in integrated circuit (IC) fabrication, effective electronic design automation (EDA) algorithms must be designed and integrated into computer-aided design (CAD) tools to address the underlying design constraints and help the circuit designer to better facilitate the lithography process. In this thesis, we focus on algorithmic design and efficient implementation of EDA algorithm for advanced lithography, including directed self-assembly (DSA) and self-aligned double patterning (SADP), to conquer the physical challenges and improve the manufacturing yield. The first advanced lithography technology we explore is self-aligned double patterning (SADP). SADP has the significant advantage over traditional litho-etch-litho-etch (LELE) double patterning in its ability to eliminate overlay, making it a preferable DPL choice for the 14 nm technology node. As in any DPL technology, layout decomposition is the key problem. While the layout decomposition problem for LELE DPL has been well studied in the literature, only a few attempts have been made for the SADP layout decomposition problem. This thesis studies the SADP decomposition problem in different scenarios. SADP has been successfully deployed in 1D patterns and has several applications; however, applying it to 2D patterns turns out to be much more difficult. All previous exact algorithms were based on computationally expensive methods such as SAT or ILP. Other previous algorithms were heuristics without a guarantee that an overlay-free solution can be found even if one exists. The SADP decomposition problem on general 2D layout is proven to be NP-complete. However, we show that if we restrict the overlay, the problem is polynomial-time solvable, and present an exact algorithm to determine if a given 2D layout has a no-overlay SADP decomposition. When designing the layout decomposition algorithms, it is usually useful to take the layout structure into consideration. As most of the current IC layouts adopt a row-based standard cell design style, we can take advantage of its characteristics and design more efficient algorithms compared to the algorithms for general 2D patterns. In particular, the fixed widths of standard cells and power tracks on top and bottom of cells suggest that improvements can be made over the algorithms for general decomposition problem. We present a shortest-path based polynomial time SADP decomposition algorithm for row-based standard cell layout that efficiently finds decompositions with minimum overlay violations. Our proposed algorithm takes advantage of the fixed width of the cells and the alternating power tracks between the rows to limit the possible decompositions and thus achieve high efficiency. The next advanced lithography technology we discuss in the thesis is directed self-assembly (DSA). Block copolymer directed self-assembly (DSA) is a promising technique for patterning contact holes and vias in 7 nm technology nodes. To pattern contacts/vias with DSA, guiding templates are usually printed first with conventional lithography (193i) that has a coarser pitch resolution. Contact holes are then patterned with DSA process. The guiding templates play the role of defining the DSA patterns, which have a finer resolution than the templates. As a result, different patterns can be obtained through controlling the templates. It is shown that DSA lithography is very promising in patterning contacts/vias in 7 nm technology node. However, to utilize DSA for full-chip manufacturing, EDA for DSA must be fully explored because EDA is the key enabler for manufacturing, and the EDA research for DSA is still lagging behind. To pattern the contact layer with DSA, we must ensure that all the contacts in the layout require only feasible DSA templates. Nevertheless, the original layout may not be designed in a DSA-friendly way. However, even with an optimized library, infeasible templates may be introduced after the physical design phase. We propose a simulated-annealing (SA) based scheme to perform full-chip level contact layer optimization. According to the experimental results, the DSA conflicts in the contact layer are reduced by close to 90% on average after applying the proposed optimization algorithm. It is a current trend that industry is transiting from the random 2D designs to highly regular 1D gridded designs for sub-20 nm nodes and fabricating circuit designs with print-cut technology. In this process, the randomly distributed cuts may be too dense to be printed by single patterning lithography. DSA has proven its success in contact hole patterning, and can be easily expanded to cut printing for 1D gridded designs. Nevertheless, the irregular distribution of cuts still presents a great challenge for DSA, as the self-assembly process usually forms regular patterns. As a result, the cut layer must be optimized for the DSA process. To address the above problem, we propose an efficient algorithm to optimize cut layers without hurting the original circuit logic. Our work utilizes a technique called `line-end extension' to move the cuts and extend the functional wires without changing the original functionality of the circuit. Consequently, the cuts can be redistributed and grouped into valid DSA templates. Multiple patterning lithography has been widely adopted for today's circuit manufacturing. However, increasing the number of masks will make the manufacturing process more expensive. By incorporating DSA into the multiple patterning process, it is possible to reduce the number of masks and achieve a cost-effective solution. We study the decomposition problem for the contact layer in row-based standard cell layout with DSA-MP complementary lithography. We explore several heuristic-based approaches, and propose an algorithm that decomposes a standard cell row optimally in polynomial-time. Our experiments show that our algorithm is guaranteed to find a minimum cost solution if one exists, while the heuristic cannot or only finds a sub-optimal solution. Our results show that the DSA-MP complementary approach is very promising for the future advanced nodes. As in any lithography technique, the process variation control and proximity correction are the most important issues. As the DSA templates are patterned by conventional lithography, the patterned templates are prone to deviate from mask shapes due to process variations, which will ultimately affect the contacts after the DSA process even for the same type of template. Therefore, in order to enable the DSA technology in contact/via layer printing, it is extremely important to accurately model and detect hotspots, as well as estimate the contact pitch and locations during the verification phase. We propose a machine learning based design automation framework for DSA verification. A novel DSA model and a set of features are included. We implemented the proposed ML-based flow and performed extensive experiments on comparing the performances of learning algorithms and features. The experimental results show that our approach is much more efficient than the traditional approach, and can produce highly accurate results

    Layout decomposition for triple patterning lithography

    Get PDF
    Nowadays the semiconductor industry is continuing to advance the limits of physics as the feature size of the chip keeps shrinking. Products of the 22 nm technology node are already available on the market, and there are many ongoing research studies for the 14/10 nm technology nodes and beyond. Due to the physical limitations, the traditional 193 nm immersion lithography is facing huge challenges in fabricating such tiny features. Several types of next-generation lithography techniques have been discussed for years, such as {\em extreme ultra-violet} (EUV) lithography, {\em E-beam direct write}, and {\em block copolymer directed self-assembly} (DSA). However, the source power for EUV is still an unresolved issue. The low throughput of E-beam makes it impractical for massive productions. DSA is still under calibration in research labs and is not ready for massive industrial deployment. Traditionally features are fabricated under single litho exposure. As feature size becomes smaller and smaller, single exposure is no longer adequate in satisfying the quality requirements. {\em Double patterning lithography} (DPL) utilizes two litho exposures to manufacture features on the same layer. Features are assigned to two masks, with each mask going through a separate litho exposure. With one more mask, the effective pitch is doubled, thus greatly enhancing the printing resolution. Therefore, DPL has been widely recognized as a feasible lithography solution in the sub-22 nm technology node. However, as the technology continues to scale down to 14/10 nm and beyond, DPL begins to show its limitations as it introduces a high number of stitches, which increases the manufacturing cost and potentially leads to functional errors of the circuits. {\em Triple pattering lithography} (TPL) uses three masks to print the features on the same layer, which further enhances the printing resolution. It is a natural extension for DPL with three masks available, and it is one of the most promising solutions for the 14/10 nm technology node and beyond. In this thesis, TPL decomposition for standard-cell-based designs is extensively studied. We proposed a polynomial time triple patterning decomposition algorithm which guarantees finding a TPL decomposition if one exists. For complex designs with stitch candidates, our algorithm is able to find a solution with the optimal number of stitches. For standard-cell-based designs, there are additional coloring constraints where the same type of cell should be fabricated following the same pattern. We proposed an algorithm that is guaranteed to find a solution when one exists. The framework of the algorithm is also extended to pattern-based TPL decompositions, where the cost of a decomposition can be minimized given a library of different patterns. The polynomial time TPL algorithm is further optimized in terms of runtime and memory while keeping the solution quality unaffected. We also studied the TPL aware detailed placement problem, where our approach is guaranteed to find a legal detailed placement satisfying TPL coloring constraints as well as minimizing the {\em half-perimeter wire length} (HPWL). Finally, we studied the problem of performance variations due to mask misalignment in {\em multiple patterning decompositions} (MPL). For advanced technology nodes, process variations (mainly mask misalignment) have significant influences on the quality of fabricated circuits, and often lead to unexpected power/timing degenerations. Mask misalignment would complicate the way of simulating timing closure if engineers do not understand the underlying effects of mask misalignment, which only exists in multiple patterning decompositions. We mathematically proved the worst-case scenarios of coupling capacitance incurred by mask misalignment in MPL decompositions. A graph model is proposed which is guaranteed to compute the tight upper bound on the worst-case coupling capacitance of any MPL decompositions for a given layout

    Metal-based microchannel heat exchangers : manufacturing and heat transfer testing

    Get PDF
    This dissertation focuses on improving the functionality of metal-based microchannel heat exchangers (MHEs), as well as pushing this technology toward real-world applications. Design optimization was carried out on MHEs for performance maximization. Double-layered microchannel layout was experimentally studied, and a significant reduction on liquid flow pressure drop penalty was achieved. Other than water, another commonly-used coolant, ethylene glycol, was applied to MHEs, and flow and heat transfer characteristics were quantified. Transient Liquid Phase (TLP) bonding was used for joining Cu structures. For further understanding of the MHE heat transfer, a detailed examination was carried out on the TLP bonding interface region. In real applications, an MHE is likely to work with a heat rejection device. Therefore, further study was done on MHEs in the context of a close-loop recirculating-liquid cooling system. An alternative roll molding method suitable for continuous fabrication of metal-based microchannel arrays was studied. This technology may serve as an enabler for large-scale manufacturing of metal-based microchannel devices in an economical fashion

    Reduction of Line Edge Roughness (LER) in Interference-Like Large Field Lithography

    Get PDF
    Line edge roughness (LER) is seen as one of the most crucial challenges to be addressed in advanced technology nodes. In order to alleviate it, several options were explored in this work for the interference-like lithography imaging conditions. The most straight forward option was to scale interference lithography (IL) for large field integrated circuit (IC) applications. IL not only serves as a simple method to create high resolution period patterns, but, it also provides the highest theoretical contrast achievable compared to other optical lithography systems. Higher contrast yields a smaller transition region between the low and high intensity parts of the image, therefore, inherently lowers LER. Two of the challenges that would prohibit scaling IL for large field IC applications were addressed in this work: (1) field size limitations, and (2) magnification correction (i.e., pitch fine-tuning) ability. Experimental results showed less than 0.5 nm pitch adjustment capability using fused silica wedges mounted on rotational stages at 300 nm pitch pattern. A detailed discussion on maximum practical IL field size was outlined by considering the subsequent trim exposures and optical path difference effects between the interfering diffraction orders. The practical limit on the IL field size was assessed to be 10 mm for the conditions specified in this work. One of the contributors of LER is the mask absorber roughness. To mitigate it, two methods were explored that are also applicable to scanners working under interference-like conditions: (1) aerial image averaging via directional translation, and (2) pupil plane filtering. Experiments on pupil plane filtering approach were performed at Imec in Leuven, Belgium, on the ASML:NXT1950i scanner equipped with FlexWAVE wavefront manipulator. Utilizing an optimized phase filter at the pupil plane and a programmed roughness mask, the transfer of 200 nm roughness period to the wafer plane was eliminated. This mitigation effect was found to be strongly dependent on the focus

    An Investigation of Interference Lithography Applications using Evanescent Fields

    Get PDF
    Since the dawn of large scale integrated circuitry photolithography has been the primary means of pattern production. Over the following 60 years the size of these patterns has shrunk massively, along with the consequent increase in the complexity of the photolithography process. The demand for smaller, more powerful, and more energy efficient computational devices requires further shrinking of the patterns. The development of processes for further pattern size reduction however is not a simple one, thus a great deal of research and investments has been focused towards it. The research within this thesis is aimed at discovering new methods and techniques for photolithography pattern reduction by exploiting fields in an interference lithography setting. Previously it was shown that dielectric resonant underlayers could be employed to enhance the depth of field for evanescent interference lithography. This however is limited by the availability of transparent high refractive index dielectric layers. To extend this to higher effective refractive indices an investigation into applying Herpin effective media within resonant underlayers was carried out. These underlayers were shown to be effective for combinations which have propagating fields within at least one layer; for combinations where all layers were evanescent however, the method broke down. Investigations into generic resonant underlayers also led to the development of a resonant overlayer method for increasing the evanescent field strength within a PR layer while allowing thicker and/or lower refractive index IMLs. Further to this a new form of BARC for hyper-NA photolithography termed an evanescent-coupled ARC was developed. These ARCs rely on evanescently-coupled dielectric or surface state polariton resonators to produce destructive interference within the PR. The properties and design constraints for each of these systems was explored and two experimental designs developed. Experiment verification of evanescent-coupled ARCs was successfully demonstrated for a SiO2jHfO2 dielectric resonator based ARC. Demonstration of a MgF2jCr surface state polariton resonator based ARC was partially demonstrated with resonance within the underlayer and the consequent alteration of the PR standing wave pattern observed. The use of prism coupling for interference lithography is limited by the maximum refractive index of the coupling prism; above this refractive index all fields are evanescent and no energy will coupled into the PR. To overcome this limit grating coupled evanescent near-field interference lithography methods are employed. The higher order diffraction orders from the grating can have NAs far greater than the refractive index of naturally occurring materials, thus patterning with these diffraction orders produces far smaller interference pitches than prism coupled systems are capable of. Grating coupled systems involve the use of evanescent fields, plasmonic resonances,as well as coupled resonators all within subwavelength scales, consequently simulation and optimization of these systems is very computationally intensive. To improve this a genetic algorithm process was applied to reduce the computational time for optimization, and to allow the use of an inverse design process. Application of this method produced an order of magnitude improvement in optimization time compared to a full parameter sweep. Models including resonant overlayers, overlayers and underlayers, as well as those employing extremely high NAs and/or higher |m| diffraction orders were produced. Simulations showed that extremely high NAs up to 20 may theoretically be used for patterning of structures with a pitch of lambda/40 equating to a full pitch of 10.1 nm with an exposing wavelength of 405 nm
    corecore