6 research outputs found

    Scheduling Policies in Time and Frequency Domains for LTE Downlink Channel: A Performance Comparison

    Get PDF
    A key feature of the Long-Term Evolution (LTE) system is that the packet scheduler can make use of the channel quality information (CQI), which is periodically reported by user equipment either in an aggregate form for the whole downlink channel or distinguished for each available subchannel. This mechanism allows for wide discretion in resource allocation, thus promoting the flourishing of several scheduling algorithms, with different purposes. It is therefore of great interest to compare the performance of such algorithms under different scenarios. Here, we carry out a thorough performance analysis of different scheduling algorithms for saturated User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) traffic sources, as well as consider both the time- and frequency-domain versions of the schedulers and for both flat and frequency-selective channels. The analysis makes it possible to appreciate the difference among the scheduling algorithms and to assess the performance gain, in terms of cell capacity, users' fairness, and packet service time, obtained by exploiting the richer, but heavier, information carried by subchannel CQI. An important part of this analysis is a throughput guarantee scheduler, which we propose in this paper. The analysis reveals that the proposed scheduler provides a good tradeoff between cell capacity and fairness both for TCP and UDP traffic sources

    When Channel Bonding is Beneficial for Opportunistic Spectrum Access Networks

    Full text link
    Transmission over multiple frequency bands combined into one logical channel speeds up data transfer for wireless networks. On the other hand, the allocation of multiple channels to a single user decreases the probability of finding a free logical channel for new connections, which may result in a network-wide throughput loss. While this relationship has been studied experimentally, especially in the WLAN configuration, little is known on how to analytically model such phenomena. With the advent of Opportunistic Spectrum Access (OSA) networks, it is even more important to understand the circumstances in which it is beneficial to bond channels occupied by primary users with dynamic duty cycle patterns. In this paper we propose an analytical framework which allows the investigation of the average channel throughput at the medium access control layer for OSA networks with channel bonding enabled. We show that channel bonding is generally beneficial, though the extent of the benefits depend on the features of the OSA network, including OSA network size and the total number of channels available for bonding. In addition, we show that performance benefits can be realized by adaptively changing the number of bonded channels depending on network conditions. Finally, we evaluate channel bonding considering physical layer constraints, i.e. throughput reduction compared to the theoretical throughput of a single virtual channel due to a transmission power limit for any bonding size.Comment: accepted to IEEE Transactions on Wireless Communication

    Resource allocation for delay constrained wireless communications

    Get PDF
    The ultimate goal of future generation wireless communications is to provide ubiquitous seamless connections between mobile terminals such as mobile phones and computers so that users can enjoy high-quality services at anytime anywhere without wires. The feature to provide a wide range of delay constrained applications with diverse quality of service (QoS) requirements, such as delay and data rate requirements, will require QoS-driven wireless resource allocation mechanisms to efficiently allocate wireless resources, such as transmission power, time slots and spectrum, for accommodating heterogeneous mobile data. In addition, multiple-input-multiple-output (MIMO) antenna technique, which uses multiple antennas at the transmitter and receiver, can improve the transmission data rate significantly and is of particular interests for future high speed wireless communications. In the thesis, we develop smart energy efficient scheduling algorithms for delay constrained communications for single user and multi-user single-input-single-output (SISO) and MIMO transmission systems. Specifically, the algorithms are designed to minimize the total transmission power while satisfying individual user’s QoS constraints, such as rate, delay and rate or delay violation. Statistical channel information (SCI) and instantaneous channel state information (CSI) at the transmitter side are considered respectively, and the proposed design can be applied for either uplink or downlink. We propose to jointly deal with scheduling of the users that access to the channel for each frame time (or available spectrum) and how much power is allocated when accessing to the channel. In addition, the algorithms are applied with modifications for uplink scheduling in IEEE 802.16 Worldwide Interoperability for Microwave Access (WiMAX). The success of the proposed research will significantly improve the ways to design wireless resource allocation for delay constrained communications

    QRP07-1: Throughput Guarantees for Wireless Networks with Opportunistic Scheduling

    No full text

    Throughput guarantees for wireless networks with opportunistic scheduling: a comparative study

    No full text
    corecore