17,297 research outputs found

    Evolutionary Dynamics and Optimization: Neutral Networks as Model-Landscapes for RNA Secondary-Structure Folding-Landscapes

    Full text link
    We view the folding of RNA-sequences as a map that assigns a pattern of base pairings to each sequence, known as secondary structure. These preimages can be constructed as random graphs (i.e. the neutral networks associated to the structure ss). By interpreting the secondary structure as biological information we can formulate the so called Error Threshold of Shapes as an extension of Eigen's et al. concept of an error threshold in the single peak landscape. Analogue to the approach of Derrida & Peliti for a of the population on the neutral network. On the one hand this model of a single shape landscape allows the derivation of analytical results, on the other hand the concept gives rise to study various scenarios by means of simulations, e.g. the interaction of two different networks. It turns out that the intersection of two sets of compatible sequences (with respect to the pair of secondary structures) plays a key role in the search for ''fitter'' secondary structures.Comment: 20 pages, uuencoded compressed postscript-file, Proc. of ECAL '95 conference, to appear., email: chris @ imb-jena.d

    Adaptive Complex Contagions and Threshold Dynamical Systems

    Full text link
    A broad range of nonlinear processes over networks are governed by threshold dynamics. So far, existing mathematical theory characterizing the behavior of such systems has largely been concerned with the case where the thresholds are static. In this paper we extend current theory of finite dynamical systems to cover dynamic thresholds. Three classes of parallel and sequential dynamic threshold systems are introduced and analyzed. Our main result, which is a complete characterization of their attractor structures, show that sequential systems may only have fixed points as limit sets whereas parallel systems may only have period orbits of size at most two as limit sets. The attractor states are characterized for general graphs and enumerated in the special case of paths and cycle graphs; a computational algorithm is outlined for determining the number of fixed points over a tree. We expect our results to be relevant for modeling a broad class of biological, behavioral and socio-technical systems where adaptive behavior is central.Comment: Submitted for publicatio
    • …
    corecore