43 research outputs found

    Investigating the function of the ventral visual reading pathway and its involvement in acquired reading disorders

    No full text
    This thesis investigated the role of the left ventral occipitotemporal (vOT) cortex and how damage to this area causes peripheral reading disorders. Functional magnetic resonance imaging (fMRI) studies in volunteers demonstrated that the left vOT is activated by written words over numbers or perceptually-matched baselines, irrespective of the word’s location on the visual field. Mixed results were observed for the comparison of words versus false font stimuli. This response profile suggests that the left vOT is preferentially activated by words or word-like stimuli, due to either: (1) bottom-up specialisation for processing familiar word-forms; (2) top-down task-dependent modulation, or (3) a combination of the two. Further studies are proposed to discriminate between these possibilities. Thirteen patients with left occipitotemporal damage participated in the rehabilitation and fMRI studies. The patients were impaired on word, text and letter reading. A structural analysis showed that damage to the left occipitotemporal white matter, in the vicinity of the inferior longitudinal fasciculus, was associated with slow word reading speed. The fMRI study showed that the patients had reduced activation of the bilateral posterior superior temporal sulci relative to controls. Activity in this area correlated with reading speed. The efficacy of intensive whole-word recognition training was tested. Immediately after the training, trained words were read faster than untrained words, but the effects did not persist until the follow-up assessment. Hence, damage to the left vOT white matter impairs rapid whole-word recognition and is resistant to rehabilitation. The final study investigated the role of spatial frequency (SF) in the lateralisation of vOT function. Lateralisation of high and low SF processing was demonstrated, concordant with the lateralisation for words and faces to the left and right vOT respectively. A perceptual basis for the organisation of vOT cortex might explain why left vOT damage is resistant to treatment

    Comparing and Validating Methods of Reading Instruction Using Behavioural and Neural Findings in an Artificial Orthography

    Get PDF
    There is strong scientific consensus that emphasizing print-to-sound relationships is critical when learning to read alphabetic languages. Nevertheless, reading instruction varies across English-speaking countries, from intensive phonic training to multicuing environments that teach sound- and meaning-based strategies. We sought to understand the behavioral and neural consequences of these differences in relative emphasis. We taught 24 English-speaking adults to read 2 sets of 24 novel words (e.g., /buv/, /sig/), written in 2 different unfamiliar orthographies. Following pretraining on oral vocabulary, participants learned to read the novel words over 8 days. Training in 1 language was biased toward print-to-sound mappings while training in the other language was biased toward print-to-meaning mappings. Results showed striking benefits of print–sound training on reading aloud, generalization, and comprehension of single words. Univariate analyses of fMRI data collected at the end of training showed that print–meaning relative to print–sound relative training increased neural effort in dorsal pathway regions involved in reading aloud. Conversely, activity in ventral pathway brain regions involved in reading comprehension was no different following print–meaning versus print–sound training. Multivariate analyses validated our artificial language approach, showing high similarity between the spatial distribution of fMRI activity during artificial and English word reading. Our results suggest that early literacy education should focus on the systematicities present in print-to-sound relationships in alphabetic languages, rather than teaching meaning-based strategies, in order to enhance both reading aloud and comprehension of written words

    Comparing and validating methods of reading instruction using behavioural and neural findings in an artificial orthography.

    Get PDF
    There is strong scientific consensus that emphasizing print-to-sound relationships is critical when learning to read alphabetic languages. Nevertheless, reading instruction varies across English-speaking countries, from intensive phonic training to multicuing environments that teach sound- and meaning-based strategies. We sought to understand the behavioral and neural consequences of these differences in relative emphasis. We taught 24 English-speaking adults to read 2 sets of 24 novel words (e.g., /buv/, /sig/), written in 2 different unfamiliar orthographies. Following pretraining on oral vocabulary, participants learned to read the novel words over 8 days. Training in 1 language was biased toward print-to-sound mappings while training in the other language was biased toward print-to-meaning mappings. Results showed striking benefits of print-sound training on reading aloud, generalization, and comprehension of single words. Univariate analyses of fMRI data collected at the end of training showed that print-meaning relative to print-sound relative training increased neural effort in dorsal pathway regions involved in reading aloud. Conversely, activity in ventral pathway brain regions involved in reading comprehension was no different following print-meaning versus print-sound training. Multivariate analyses validated our artificial language approach, showing high similarity between the spatial distribution of fMRI activity during artificial and English word reading. Our results suggest that early literacy education should focus on the systematicities present in print-to-sound relationships in alphabetic languages, rather than teaching meaning-based strategies, in order to enhance both reading aloud and comprehension of written words. (PsycINFO Database Recor

    Grounding semantic cognition using computational modelling and network analysis

    Get PDF
    The overarching objective of this thesis is to further the field of grounded semantics using a range of computational and empirical studies. Over the past thirty years, there have been many algorithmic advances in the modelling of semantic cognition. A commonality across these cognitive models is a reliance on hand-engineering “toy-models”. Despite incorporating newer techniques (e.g. Long short-term memory), the model inputs remain unchanged. We argue that the inputs to these traditional semantic models have little resemblance with real human experiences. In this dissertation, we ground our neural network models by training them with real-world visual scenes using naturalistic photographs. Our approach is an alternative to both hand-coded features and embodied raw sensorimotor signals. We conceptually replicate the mutually reinforcing nature of hybrid (feature-based and grounded) representations using silhouettes of concrete concepts as model inputs. We next gradually develop a novel grounded cognitive semantic representation which we call scene2vec, starting with object co-occurrences and then adding emotions and language-based tags. Limitations of our scene-based representation are identified for more abstract concepts (e.g. freedom). We further present a large-scale human semantics study, which reveals small-world semantic network topologies are context-dependent and that scenes are the most dominant cognitive dimension. This finding leads us to conclude that there is no meaning without context. Lastly, scene2vec shows promising human-like context-sensitive stereotypes (e.g. gender role bias), and we explore how such stereotypes are reduced by targeted debiasing. In conclusion, this thesis provides support for a novel computational viewpoint on investigating meaning - scene-based grounded semantics. Future research scaling scene-based semantic models to human-levels through virtual grounding has the potential to unearth new insights into the human mind and concurrently lead to advancements in artificial general intelligence by enabling robots, embodied or otherwise, to acquire and represent meaning directly from the environment

    Using fMRI and Behavioural Measures to Investigate Rehabilitation in Post-Stroke Aphasic Deficits

    Get PDF
    In this thesis I investigated whether an intensive computerised, home-based therapy programme could improve phonological discrimination ability in 19 patients with chronic post-stroke aphasia. One skill specifically targeted by the treatment demonstrated an improvement due to the therapy. However, this improvement did not generalise to untreated items, and was only effective for participants without a lesion involving the frontal lobe, indicating a potentially important role for this region in determining outcome of aphasia therapy. Complementary functional imaging studies investigated activity in domain-general and domain-specific networks in both patients and healthy volunteers during listening and repeating simple sentences. One important consideration when comparing a patient group with a healthy population is the difference in task difficulty encountered by the two groups. Increased cognitive effort can be expected to increase activity in domain-general networks. I minimised the effect of this confound by manipulating task difficulty for the healthy volunteers to reduce their behavioural performance so that it was comparable to that of the patients. By this means I demonstrated that the activation patterns in domain-general regions were very similar in the two groups. Region-of-interest analysis demonstrated that activity within a domain-general network, the salience network, predicted residual language function in the patients with aphasia, even after accounting for lesion volume and their chronological age. I drew two broad conclusions from these studies. First, that computer-based rehabilitation can improve disordered phonological discrimination in chronic aphasia, but that lesion distribution may influence the response to this training. Second, that the ability to activate domain-general cognitive control regions influences outcome in aphasia. This allows me to propose that in future work, therapeutic strategies, pharmacological or behavioural, targeting domain-general brain systems, may benefit aphasic stroke rehabilitation.Open Acces

    A Model of the Network Architecture of the Brain that Supports Natural Language Processing

    Get PDF
    For centuries, neuroscience has proposed models of the neurobiology of language processing that are static and localised to few temporal and inferior frontal regions. Although existing models have offered some insight into the processes underlying lower-level language features, they have largely overlooked how language operates in the real world. Here, we aimed at investigating the network organisation of the brain and how it supports language processing in a naturalistic setting. We hypothesised that the brain is organised in a multiple core-periphery and dynamic modular architecture, with canonical language regions forming high-connectivity hubs. Moreover, we predicted that language processing would be distributed to much of the rest of the brain, allowing it to perform more complex tasks and to share information with other cognitive domains. To test these hypotheses, we collected the Naturalistic Neuroimaging Database of people watching full length movies during functional magnetic resonance imaging. We computed network algorithms to capture the voxel-wise architecture of the brain in individual participants and inspected variations in activity distribution over different stimuli and over more complex language features. Our results confirmed the hypothesis that the brain is organised in a flexible multiple core-periphery architecture with large dynamic communities. Here, language processing was distributed to much of the rest of the brain, together forming multiple communities. Canonical language regions constituted hubs, explaining why they consistently appear in various other neurobiology of language models. Moreover, language processing was supported by other regions such as visual cortex and episodic memory regions, when processing more complex context-specific language features. Overall, our flexible and distributed model of language comprehension and the brain points to additional brain regions and pathways that could be exploited for novel and more individualised therapies for patients suffering from speech impairments

    Auditory comprehension: from the voice up to the single word level

    Get PDF
    Auditory comprehension, the ability to understand spoken language, consists of a number of different auditory processing skills. In the five studies presented in this thesis I investigated both intact and impaired auditory comprehension at different levels: voice versus phoneme perception, as well as single word auditory comprehension in terms of phonemic and semantic content. In the first study, using sounds from different continua of ‘male’-/pĂŠ/ to ‘female’-/tĂŠ/ and ‘male’-/tĂŠ/ to ‘female’-/pĂŠ/, healthy participants (n=18) showed that phonemes are categorised faster than voice, in contradistinction with the common hypothesis that voice information is stripped away (or normalised) to access phonemic content. Furthermore, reverse correlation analysis suggests that gender and phoneme are processed on the basis of different perceptual representations. A follow-up study (same paradigm) in stroke patients (n=25, right or left hemispheric brain lesions, both with and without aphasia) showed that lesions of the right frontal cortex (likely ventral inferior frontal gyrus) leads to systematic voice perception deficits while left hemispheric lesions can elicit both voice and phoneme deficits. Together these results show that phoneme processing is lateralized while voice information processing requires both hemispheres. Furthermore, this suggests that commencing Speech and Language Therapy at a low level of acoustic processing/voice perception may be an appropriate method in the treatment of phoneme perception impairments. A longitudinal case study (CF) of crossed aphasia (rare acquired communication impairment secondary to lesion ipsilateral to the dominant hand) is then presented alongside a mini-review of the literature. Extensive clinical investigation showed that CF presented with word-finding difficulties related to impaired auditory phonological analysis, while functional Magnetic Resonance Imaging (fMRI) analyses showed right hemispheric lateralization of language functions (reading, repetition and verb generation). These results, together with the co-morbidity analysis from the mini-review, suggest that crossed aphasia can be explained by developmental disorders which cause partial right lateralization shift of language processes. Interestingly, in CF this process did not affect voice lateralization and information processing, suggesting partial segregation of voice and speech processing. In the last two studies, auditory comprehension was examined at the single word level using a word-picture matching task with congruent (correct target) and incongruent (semantic, phonological and unrelated foils) conditions. fMRI in healthy participants (n=16) revealed a key role of the pars triangularis (phonological processing), the left angular gyrus (semantic incongruency) and the left precuneus (semantic relatedness) in this task – regions typically associated via the arcuate fasciculus and often impaired in aphasia. Further investigation of stroke patients on the same task (n=15) suggested that the connections between the angular gyrus and the pars triangularis serve a fundamental role in semantic processing. The quality of a published word-picture matching task was also investigated, with results questioning the clinical relevance of this task as an assessment tool. Finally, a pilot study looking at the effect of a computer-assisted auditory comprehension therapy (React2©) in 6 stroke patients (vs. 6 healthy controls and 6 stroke patients without therapy) is presented. Results show that the more therapy patients carry out the more improvement is seen in the semantic processing of single nouns. However, these results need to be reproduced on a larger scale in order to generalise any outcomes. Overall, the findings from these studies present new insight into, as well as extending on, current cognitive and neuroanatomical models of voice perception, speech perception and single word auditory comprehension. A combinatorial approach to cognitive and neuroanatomical models is proposed in order to further research, and thus improve clinical care, into impaired auditory comprehension

    Automatic Image Captioning with Style

    Get PDF
    This thesis connects two core topics in machine learning, vision and language. The problem of choice is image caption generation: automatically constructing natural language descriptions of image content. Previous research into image caption generation has focused on generating purely descriptive captions; I focus on generating visually relevant captions with a distinct linguistic style. Captions with style have the potential to ease communication and add a new layer of personalisation. First, I consider naming variations in image captions, and propose a method for predicting context-dependent names that takes into account visual and linguistic information. This method makes use of a large-scale image caption dataset, which I also use to explore naming conventions and report naming conventions for hundreds of animal classes. Next I propose the SentiCap model, which relies on recent advances in artificial neural networks to generate visually relevant image captions with positive or negative sentiment. To balance descriptiveness and sentiment, the SentiCap model dynamically switches between two recurrent neural networks, one tuned for descriptive words and one for sentiment words. As the first published model for generating captions with sentiment, SentiCap has influenced a number of subsequent works. I then investigate the sub-task of modelling styled sentences without images. The specific task chosen is sentence simplification: rewriting news article sentences to make them easier to understand. For this task I design a neural sequence-to-sequence model that can work with limited training data, using novel adaptations for word copying and sharing word embeddings. Finally, I present SemStyle, a system for generating visually relevant image captions in the style of an arbitrary text corpus. A shared term space allows a neural network for vision and content planning to communicate with a network for styled language generation. SemStyle achieves competitive results in human and automatic evaluations of descriptiveness and style. As a whole, this thesis presents two complete systems for styled caption generation that are first of their kind and demonstrate, for the first time, that automatic style transfer for image captions is achievable. Contributions also include novel ideas for object naming and sentence simplification. This thesis opens up inquiries into highly personalised image captions; large scale visually grounded concept naming; and more generally, styled text generation with content control
    corecore