72 research outputs found

    Jigsaw percolation on random hypergraphs

    Full text link
    The jigsaw percolation process on graphs was introduced by Brummitt, Chatterjee, Dey, and Sivakoff as a model of collaborative solutions of puzzles in social networks. Percolation in this process may be viewed as the joint connectedness of two graphs on a common vertex set. Our aim is to extend a result of Bollob\'as, Riordan, Slivken, and Smith concerning this process to hypergraphs for a variety of possible definitions of connectedness. In particular, we determine the asymptotic order of the critical threshold probability for percolation when both hypergraphs are chosen binomially at random.Comment: 17 page

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    Positional Games

    Full text link
    Positional games are a branch of combinatorics, researching a variety of two-player games, ranging from popular recreational games such as Tic-Tac-Toe and Hex, to purely abstract games played on graphs and hypergraphs. It is closely connected to many other combinatorial disciplines such as Ramsey theory, extremal graph and set theory, probabilistic combinatorics, and to computer science. We survey the basic notions of the field, its approaches and tools, as well as numerous recent advances, standing open problems and promising research directions.Comment: Submitted to Proceedings of the ICM 201

    Multi-coloured jigsaw percolation on random graphs

    Get PDF
    The jigsaw percolation process, introduced by Brummitt, Chatterjee, Dey and Sivakoff, was inspired by a group of people collectively solving a puzzle. It can also be seen as a measure of whether two graphs on a common vertex set are "jointly connected". In this paper we consider the natural generalisation of this process to an arbitrary number of graphs on the same vertex set. We prove that if these graphs are random, then the jigsaw percolation process exhibits a phase transition in terms of the product of the edge probabilities. This generalises a result of Bollob\'as, Riordan, Slivken and Smith.Comment: 13 page

    The hitting time of clique factors

    Full text link
    In a recent paper, Kahn gave the strongest possible, affirmative, answer to Shamir's problem, which had been open since the late 1970s: Let r≥3r \ge 3 and let nn be divisible by rr. Then, in the random rr-uniform hypergraph process on nn vertices, as soon as the last isolated vertex disappears, a perfect matching emerges. In the present work, we transfer this hitting time result to the setting of clique factors in the random graph process: At the time that the last vertex joins a copy of the complete graph KrK_r, the random graph process contains a KrK_r-factor. Our proof draws on a novel sequence of couplings, extending techniques of Riordan and the first author. An analogous result is proved for clique factors in the ss-uniform hypergraph process (s≥3s \ge 3)
    • …
    corecore