1,021 research outputs found

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Attention Satisfies: A Constraint-Satisfaction Lens on Factual Errors of Language Models

    Full text link
    We investigate the internal behavior of Transformer-based Large Language Models (LLMs) when they generate factually incorrect text. We propose modeling factual queries as Constraint Satisfaction Problems and use this framework to investigate how the model interacts internally with factual constraints. Specifically, we discover a strong positive relation between the model's attention to constraint tokens and the factual accuracy of its responses. In our curated suite of 11 datasets with over 40,000 prompts, we study the task of predicting factual errors with the Llama-2 family across all scales (7B, 13B, 70B). We propose SAT Probe, a method probing self-attention patterns, that can predict constraint satisfaction and factual errors, and allows early error identification. The approach and findings demonstrate how using the mechanistic understanding of factuality in LLMs can enhance reliability

    A Survey on Explainable Anomaly Detection

    Full text link
    In the past two decades, most research on anomaly detection has focused on improving the accuracy of the detection, while largely ignoring the explainability of the corresponding methods and thus leaving the explanation of outcomes to practitioners. As anomaly detection algorithms are increasingly used in safety-critical domains, providing explanations for the high-stakes decisions made in those domains has become an ethical and regulatory requirement. Therefore, this work provides a comprehensive and structured survey on state-of-the-art explainable anomaly detection techniques. We propose a taxonomy based on the main aspects that characterize each explainable anomaly detection technique, aiming to help practitioners and researchers find the explainable anomaly detection method that best suits their needs.Comment: Paper accepted by the ACM Transactions on Knowledge Discovery from Data (TKDD) for publication (preprint version

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Interleaving Allocation, Planning, and Scheduling for Heterogeneous Multi-Robot Coordination through Shared Constraints

    Get PDF
    In a wide variety of domains, such as warehouse automation, agriculture, defense, and assembly, effective coordination of heterogeneous multi-robot teams is needed to solve complex problems. Effective coordination is predicated on the ability to solve the four fundamentally intertwined questions of coordination: what (task planning), who (task allocation), when (scheduling), and how (motion planning). Owing to the complexity of these four questions and their interactions, existing approaches to multi-robot coordination have resorted to defining and solving problems that focus on a subset of the four questions. Notable examples include Task and Motion Planning (what and how), Multi-Agent Planning (what and who), and Multi-Agent Path Finding (who and how). In fact, a holistic problem formulation that fully integrates the four questions lies beyond the scope of prior literature. This dissertation focuses on examining the use of shared constraints on tasks and robots to interleave algorithms for task planning, task allocation, scheduling, and motion planning and investigating the hypothesis that a framework that interleaves algorithms to these four sub-problems will lead to solutions with lower makespans, greater computational efficiency, and the ability to solve larger problems. To support this claim, this dissertation contributes: (i) a novel temporal planner that interleaves task planning and scheduling layers, (ii) a trait-based time-extended task allocation framework that interleaves task allocation, scheduling, and motion planning, (iii) the formulation of holistic heterogeneous multi-robot coordination problem that simultaneously considers all four questions, (iv) a framework that interleaves layers for all four questions to solve this holistic heterogeneous multi-robot coordination problem, (v) a scheduling algorithm that reasons about temporal uncertainty, provides a theoretical guarantee on risk, and can be utilized within our framework, and (vi) a learning-based scheduling algorithm that reasons about deadlines and can be utilized within our framework.Ph.D

    Security Technologies and Methods for Advanced Cyber Threat Intelligence, Detection and Mitigation

    Get PDF
    The rapid growth of the Internet interconnectivity and complexity of communication systems has led us to a significant growth of cyberattacks globally often with severe and disastrous consequences. The swift development of more innovative and effective (cyber)security solutions and approaches are vital which can detect, mitigate and prevent from these serious consequences. Cybersecurity is gaining momentum and is scaling up in very many areas. This book builds on the experience of the Cyber-Trust EU project’s methods, use cases, technology development, testing and validation and extends into a broader science, lead IT industry market and applied research with practical cases. It offers new perspectives on advanced (cyber) security innovation (eco) systems covering key different perspectives. The book provides insights on new security technologies and methods for advanced cyber threat intelligence, detection and mitigation. We cover topics such as cyber-security and AI, cyber-threat intelligence, digital forensics, moving target defense, intrusion detection systems, post-quantum security, privacy and data protection, security visualization, smart contracts security, software security, blockchain, security architectures, system and data integrity, trust management systems, distributed systems security, dynamic risk management, privacy and ethics

    State Merging with Quantifiers in Symbolic Execution

    Full text link
    We address the problem of constraint encoding explosion which hinders the applicability of state merging in symbolic execution. Specifically, our goal is to reduce the number of disjunctions and if-then-else expressions introduced during state merging. The main idea is to dynamically partition the symbolic states into merging groups according to a similar uniform structure detected in their path constraints, which allows to efficiently encode the merged path constraint and memory using quantifiers. To address the added complexity of solving quantified constraints, we propose a specialized solving procedure that reduces the solving time in many cases. Our evaluation shows that our approach can lead to significant performance gains

    Imbalanced Cryptographic Protocols

    Get PDF
    Efficiency is paramount when designing cryptographic protocols, heavy mathematical operations often increase computation time, even for modern computers. Moreover, they produce large amounts of data that need to be sent through (often limited) network connections. Therefore, many research efforts are invested in improving efficiency, sometimes leading to imbalanced cryptographic protocols. We define three types of imbalanced protocols, computationally, communicationally, and functionally imbalanced protocols. Computationally imbalanced cryptographic protocols appear when optimizing a protocol for one party having significantly more computing power. In communicationally imbalanced cryptographic protocols the messages mainly flow from one party to the others. Finally, in functionally imbalanced cryptographic protocols the functional requirements of one party strongly differ from the other parties. We start our study by looking into laconic cryptography, which fits both the computational and communicational category. The emerging area of laconic cryptography involves the design of two-party protocols involving a sender and a receiver, where the receiver’s input is large. The key efficiency requirement is that the protocol communication complexity must be independent of the receiver’s input size. We show a new way to build laconic OT based on the new notion of Set Membership Encryption (SME) – a new member in the area of laconic cryptography. SME allows a sender to encrypt to one recipient from a universe of receivers, while using a small digest from a large subset of receivers. A recipient is only able to decrypt the message if and only if it is part of the large subset. As another example of a communicationally imbalanced protocol we will look at NIZKs. We consider the problem of proving in zero-knowledge the existence of exploits in executables compiled to run on real-world processors. Finally, we investigate the problem of constructing law enforcement access systems that mitigate the possibility of unauthorized surveillance, as a functionally imbalanced cryptographic protocol. We present two main constructions. The first construction enables prospective access, allowing surveillance only if encryption occurs after a warrant has been issued and activated. The second allows retrospective access to communications that occurred prior to a warrant’s issuance
    corecore