457 research outputs found

    Automated Method for the Volumetric Evaluation of Myocardial Scar from Cardiac Magnetic Resonance Images

    Get PDF
    In most western countries cardiovascular diseases are the leading cause of death, and for the survivors of ischemic attack an accurate quantification of the extent of the damage is required to correctly assess its impact and for risk stratification, and to select the best treatment for the patient. Moreover, a fast and reliable tool for the assessment of the cardiac function and the measurement of clinical indexes is highly desirable. The aim of this thesis is to provide computational approaches to better detect and assess the presence of myocardial fibrosis in the heart, particularly but not only in the left ventricle, by performing a fusion of the information from different magnetic resonance imaging sequences. We also developed and provided a semiautomatic tool useful for the fast evaluation and quantification of clinical indexes derived from heart chambers volumes. The thesis is composed by five chapters. The first chapter introduces the most common cardiac diseases such as ischemic cardiomyopathy and describes in detail the cellular and structural remodelling phenomena stemming from heart failure. The second chapter regards the detection of the left ventricle through the development of a semi-automated approach for both endocardial and epicardial surfaces, and myocardial mask extraction. In the third chapter the workflow for scar assessment is presented, in which the previously described approach is used to obtain the 3D left ventricle patient-specific geometry; a registration algorithm is then used to superimpose the fibrosis information derived from the late gadolinium enhancement magnetic resonance imaging to obtain a patientspecific 3D map of fibrosis extension and location on the left ventricle myocardium. Focus of the fourth chapter is on the left atrium, and fibrotic tissue detection for gaining insight on atrial fibrillation. In the fifth chapter some conclusive remarks are presented with possible future developments of the presented work

    Submillimeter diffusion tensor imaging and late gadolinium enhancement cardiovascular magnetic resonance of chronic myocardial infarction.

    Get PDF
    BackgroundKnowledge of the three-dimensional (3D) infarct structure and fiber orientation remodeling is essential for complete understanding of infarct pathophysiology and post-infarction electromechanical functioning of the heart. Accurate imaging of infarct microstructure necessitates imaging techniques that produce high image spatial resolution and high signal-to-noise ratio (SNR). The aim of this study is to provide detailed reconstruction of 3D chronic infarcts in order to characterize the infarct microstructural remodeling in porcine and human hearts.MethodsWe employed a customized diffusion tensor imaging (DTI) technique in conjunction with late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) on a 3T clinical scanner to image, at submillimeter resolution, myofiber orientation and scar structure in eight chronically infarcted porcine hearts ex vivo. Systematic quantification of local microstructure was performed and the chronic infarct remodeling was characterized at different levels of wall thickness and scar transmurality. Further, a human heart with myocardial infarction was imaged using the same DTI sequence.ResultsThe SNR of non-diffusion-weighted images was >100 in the infarcted and control hearts. Mean diffusivity and fractional anisotropy (FA) demonstrated a 43% increase, and a 35% decrease respectively, inside the scar tissue. Despite this, the majority of the scar showed anisotropic structure with FA higher than an isotropic liquid. The analysis revealed that the primary eigenvector orientation at the infarcted wall on average followed the pattern of original fiber orientation (imbrication angle mean: 1.96 ± 11.03° vs. 0.84 ± 1.47°, p = 0.61, and inclination angle range: 111.0 ± 10.7° vs. 112.5 ± 6.8°, p = 0.61, infarcted/control wall), but at a higher transmural gradient of inclination angle that increased with scar transmurality (r = 0.36) and the inverse of wall thickness (r = 0.59). Further, the infarcted wall exhibited a significant increase in both the proportion of left-handed epicardial eigenvectors, and in the angle incoherency. The infarcted human heart demonstrated preservation of primary eigenvector orientation at the thinned region of infarct, consistent with the findings in the porcine hearts.ConclusionsThe application of high-resolution DTI and LGE-CMR revealed the detailed organization of anisotropic infarct structure at a chronic state. This information enhances our understanding of chronic post-infarction remodeling in large animal and human hearts

    Automatic segmentation in CMR - Development and validation of algorithms for left ventricular function, myocardium at risk and myocardial infarction

    Get PDF
    In this thesis four new algorithms are presented for automatic segmentation in cardiovascular magnetic resonance (CMR); automatic segmentation of the left ventricle, myocardial infarction, and myocardium at risk in two different image types. All four algorithms were implemented in freely available software for image analysis and were validated against reference delineations with a low bias and high regional agreement. CMR is the most accurate and reproducible method for assessment of left ventricular mass and volumes and reference standard for assessment of myocardial infarction. CMR is also validated against single photon emission computed tomography (SPECT) for assessment of myocardium at risk up to one week after acute myocardial infarction. However, the clinical standard for quantification of left ventricular mass and volumes is manual delineation which has been shown to have a large bias between observers from different sites and for myocardium at risk and myocardial infarction there is no clinical standard due to varying results shown for the previously suggested threshold methods. The new automatic algorithms were all based on intensity classification by Expectation Maximization (EM) and incorporation of a priori information specific for each application. Validation was performed in large cohorts of patients with regards to bias in clinical parameters and regional agreement as Dice Similarity Coefficient (DSC). Further, images with reference delineation of the left ventricle were made available for future benchmarking of left ventricular segmentation, and the new automatic algorithms for segmentation of myocardium at risk and myocardial infarction were directly compared to the previously suggested intensity threshold methods. Combining intensity classification by EM with a priori information as in the new automatic algorithms was shown superior to previous methods and specifically to the previously suggested threshold methods for myocardium at risk and myocardial infarction. Added value of using a priori information and intensity correction was shown significant measured by DSC even though not significant for bias. For the previously suggested methods of infarct quantification a poorer result was found in the new multi-center, multi-vendor patient data than in the original validation in animal studies or single center patient studies. Thus, the results in this thesis also show the importance ofusing both bias and DSC for validation and performing validation in images of representative quality as in multi-center, multi-vendor patient studies

    Texture analysis of cardiac cine magnetic resonance imaging to detect nonviable segments in patients with chronic myocardial infarction

    Full text link
    [EN] Purpose: To investigate the ability of texture analysis to differentiate between infarcted nonviable, viable, and remote segments on cardiac cine magnetic resonance imaging (MRI). Methods: This retrospective study included 50 patients suffering chronic myocardial infarction. The data were randomly split into training (30 patients) and testing (20 patients) sets. The left ventricular myocardium was segmented according to the 17-segment model in both cine and late gadolinium enhancement (LGE) MRI. Infarcted myocardium regions were identified on LGE in short-axis views. Nonviable segments were identified as those showing LGE 50%, and viable segments those showing 0 < LGE < 50% transmural extension. Features derived from five texture analysis methods were extracted from the segments on cine images. A support vector machine (SVM) classifier was trained with different combination of texture features to obtain a model that provided optimal classification performance. Results: The best classification on testing set was achieved with local binary patterns features using a 2D + t approach, in which the features are computed by including information of the time dimension available in cine sequences. The best overall area under the receiver operating characteristic curve (AUC) were: 0.849, sensitivity of 92% to detect nonviable segments, 72% to detect viable segments, and 85% to detect remote segments. Conclusion: Nonviable segments can be detected on cine MRI using texture analysis and this may be used as hypothesis for future research aiming to detect the infarcted myocardium by means of a gadolinium-free approach.This work was supported in part by the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds under grant BFU2015-64380-C2-2-R, by Instituto de Salud Carlos III and FEDER funds under grants FIS PI14/00271 and PIE15/00013 and by the Generalitat Valenciana under grant PROMETEO/2013/007. The first author, Andres Larroza, was supported by grant FPU12/01140 from the Spanish Ministerio de Educacion, Cultura y Deporte (MECD).Larroza, A.; López-Lereu, M.; Monmeneu, J.; Gavara-Doñate, J.; Chorro, F.; Bodi, V.; Moratal, D. (2018). Texture analysis of cardiac cine magnetic resonance imaging to detect nonviable segments in patients with chronic myocardial infarction. Medical Physics. 45(4):1471-1480. https://doi.org/10.1002/mp.12783S14711480454Castellano, G., Bonilha, L., Li, L. M., & Cendes, F. (2004). Texture analysis of medical images. Clinical Radiology, 59(12), 1061-1069. doi:10.1016/j.crad.2004.07.008Hodgdon, T., McInnes, M. D. F., Schieda, N., Flood, T. A., Lamb, L., & Thornhill, R. E. (2015). Can Quantitative CT Texture Analysis be Used to Differentiate Fat-poor Renal Angiomyolipoma from Renal Cell Carcinoma on Unenhanced CT Images? Radiology, 276(3), 787-796. doi:10.1148/radiol.2015142215Larroza, A., Moratal, D., Paredes-Sánchez, A., Soria-Olivas, E., Chust, M. L., Arribas, L. A., & Arana, E. (2015). Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in MRI. Journal of Magnetic Resonance Imaging, 42(5), 1362-1368. doi:10.1002/jmri.24913Thevenot, J., Hirvasniemi, J., Pulkkinen, P., Määttä, M., Korpelainen, R., Saarakkala, S., & Jämsä, T. (2014). Assessment of Risk of Femoral Neck Fracture with Radiographic Texture Parameters: A Retrospective Study. Radiology, 272(1), 184-191. doi:10.1148/radiol.14131390Kassner, A., & Thornhill, R. E. (2010). Texture Analysis: A Review of Neurologic MR Imaging Applications. American Journal of Neuroradiology, 31(5), 809-816. doi:10.3174/ajnr.a2061Pfeiffer, M. P., & Biederman, R. W. W. (2015). Cardiac MRI. Medical Clinics of North America, 99(4), 849-861. doi:10.1016/j.mcna.2015.02.011Flett, A. S., Hasleton, J., Cook, C., Hausenloy, D., Quarta, G., Ariti, C., … Moon, J. C. (2011). Evaluation of Techniques for the Quantification of Myocardial Scar of Differing Etiology Using Cardiac Magnetic Resonance. JACC: Cardiovascular Imaging, 4(2), 150-156. doi:10.1016/j.jcmg.2010.11.015Engan K Eftestøl T Ørn S Kvaloy JT Woie L Exploratory data analysis of image texture and statistical features on myocardium and infarction areas in cardiac magnetic resonance images 2010Kotu LP Engan K Eftestøl T Ørn S Woie L Segmentation of scarred and non-scarred myocardium in LG enhanced CMR images using intensity-based textural analysis 2011Kotu, L., Engan, K., Skretting, K., Måløy, F., Ørn, S., Woie, L., & Eftestøl, T. (2013). Probability mapping of scarred myocardium using texture and intensity features in CMR images. BioMedical Engineering OnLine, 12(1), 91. doi:10.1186/1475-925x-12-91Schofield, R., Ganeshan, B., Kozor, R., Nasis, A., Endozo, R., Groves, A., … Moon, J. C. (2016). CMR myocardial texture analysis tracks different etiologies of left ventricular hypertrophy. Journal of Cardiovascular Magnetic Resonance, 18(S1). doi:10.1186/1532-429x-18-s1-o82Larroza, A., Materka, A., López-Lereu, M. P., Monmeneu, J. V., Bodí, V., & Moratal, D. (2017). Differentiation between acute and chronic myocardial infarction by means of texture analysis of late gadolinium enhancement and cine cardiac magnetic resonance imaging. European Journal of Radiology, 92, 78-83. doi:10.1016/j.ejrad.2017.04.024Baessler, B., Mannil, M., Oebel, S., Maintz, D., Alkadhi, H., & Manka, R. (2018). Subacute and Chronic Left Ventricular Myocardial Scar: Accuracy of Texture Analysis on Nonenhanced Cine MR Images. Radiology, 286(1), 103-112. doi:10.1148/radiol.2017170213Hervas, A., Ruiz-Sauri, A., de Dios, E., Forteza, M. J., Minana, G., Nunez, J., … Bodi, V. (2015). Inhomogeneity of collagen organization within the fibrotic scar after myocardial infarction: results in a swine model and in human samples. Journal of Anatomy, 228(1), 47-58. doi:10.1111/joa.12395Heiberg, E., Sjögren, J., Ugander, M., Carlsson, M., Engblom, H., & Arheden, H. (2010). Design and validation of Segment - freely available software for cardiovascular image analysis. BMC Medical Imaging, 10(1). doi:10.1186/1471-2342-10-1Bodí, V., Sanchis, J., López-Lereu, M. P., Losada, A., Núñez, J., Pellicer, M., … Llácer, À. (2005). Usefulness of a Comprehensive Cardiovascular Magnetic Resonance Imaging Assessment for Predicting Recovery of Left Ventricular Wall Motion in the Setting of Myocardial Stunning. Journal of the American College of Cardiology, 46(9), 1747-1752. doi:10.1016/j.jacc.2005.07.039Rangayyan, R. M., Nguyen, T. M., Ayres, F. J., & Nandi, A. K. (2009). Effect of Pixel Resolution on Texture Features of Breast Masses in Mammograms. Journal of Digital Imaging, 23(5), 547-553. doi:10.1007/s10278-009-9238-0Materka A Strzelecki M On the importance of MRI nonuniformity correction for texture analysis 2013Collewet, G., Strzelecki, M., & Mariette, F. (2004). Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magnetic Resonance Imaging, 22(1), 81-91. doi:10.1016/j.mri.2003.09.001Vallières M MATLAB programming tools for radiomics analysis https://github.com/mvallieres/radiomicsZhao G Pietikainen M Center for machine vision and signal analysis http://www.cse.oulu.fi/CMV/Downloads/LBPMatlabZwanenburg A Leger S Vallières M Löck S Image biomarker standardisation initiative 2017 http://arxiv.org/abs/1612.07003Vallières, M., Freeman, C. R., Skamene, S. R., & El Naqa, I. (2015). A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Physics in Medicine and Biology, 60(14), 5471-5496. doi:10.1088/0031-9155/60/14/5471Zhao, G., & Pietikainen, M. (2007). Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6), 915-928. doi:10.1109/tpami.2007.1110Ojala T Pietikäinen M Mäenpää T A generalized local binary pattern operator for multiresolution gray scale and rotation invariant texture classificationDuan, K.-B., Rajapakse, J. C., Wang, H., & Azuaje, F. (2005). Multiple SVM-RFE for Gene Selection in Cancer Classification With Expression Data. IEEE Transactions on Nanobioscience, 4(3), 228-234. doi:10.1109/tnb.2005.853657Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Machine Learning, 46(1/3), 389-422. doi:10.1023/a:1012487302797Wang, S., & Summers, R. M. (2012). Machine learning and radiology. Medical Image Analysis, 16(5), 933-951. doi:10.1016/j.media.2012.02.005Kuhn, M. (2008). Building Predictive Models inRUsing thecaretPackage. Journal of Statistical Software, 28(5). doi:10.18637/jss.v028.i05Colby J (multiple) Support Vector Machine Recursive Feature Elimination - mSVM-RFE http://www.colbyimaging.com/wiki/statistics/msvm-rfeSalzberg, S. L. (1997). Data Mining and Knowledge Discovery, 1(3), 317-328. doi:10.1023/a:1009752403260Bodí, V., Husser, O., Sanchis, J., Núñez, J., López-Lereu, M. P., Monmeneu, J. V., … Llácer, A. (2010). Contractile Reserve and Extent of Transmural Necrosis in the Setting of Myocardial Stunning: Comparison at Cardiac MR Imaging. Radiology, 255(3), 755-763. doi:10.1148/radiol.10091191Bodi, V., Monmeneu, J. V., Ortiz-Perez, J. T., Lopez-Lereu, M. P., Bonanad, C., Husser, O., … Chorro, F. J. (2016). Prediction of Reverse Remodeling at Cardiac MR Imaging Soon after First ST-Segment–Elevation Myocardial Infarction: Results of a Large Prospective Registry. Radiology, 278(1), 54-63. doi:10.1148/radiol.2015142674Shriki, J. E., Surti, K. S., Farvid, A. F., Lee, C. C., Samadi, S., Hirschbeinv, J., & Colletti, P. M. (2011). Chemical Shift Artifact on Steady-State Free Precession Cardiac Magnetic Resonance Sequences as a Result of Lipomatous Metaplasia: A Novel Finding in Chronic Myocardial Infarctions. Canadian Journal of Cardiology, 27(5), 664.e17-664.e23. doi:10.1016/j.cjca.2010.12.074Goldfarb, J. W., McLaughlin, J., Gray, C. A., & Han, J. (2011). Cyclic CINE-balanced steady-state free precession image intensity variations: Implications for the detection of myocardial edema. Journal of Magnetic Resonance Imaging, 33(3), 573-581. doi:10.1002/jmri.22368Gillies, R. J., Kinahan, P. E., & Hricak, H. (2016). Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278(2), 563-577. doi:10.1148/radiol.201515116

    Quantification in cardiac MRI: advances in image acquisition and processing

    Get PDF
    Cardiac magnetic resonance (CMR) imaging enables accurate and reproducible quantification of measurements of global and regional ventricular function, blood flow, perfusion at rest and stress as well as myocardial injury. Recent advances in MR hardware and software have resulted in significant improvements in image quality and a reduction in imaging time. Methods for automated and robust assessment of the parameters of cardiac function, blood flow and morphology are being developed. This article reviews the recent advances in image acquisition and quantitative image analysis in CMR
    corecore