5,971 research outputs found

    Neither Global Nor Local: A Hierarchical Robust Subspace Clustering For Image Data

    Full text link
    In this paper, we consider the problem of subspace clustering in presence of contiguous noise, occlusion and disguise. We argue that self-expressive representation of data in current state-of-the-art approaches is severely sensitive to occlusions and complex real-world noises. To alleviate this problem, we propose a hierarchical framework that brings robustness of local patches-based representations and discriminant property of global representations together. This approach consists of 1) a top-down stage, in which the input data is subject to repeated division to smaller patches and 2) a bottom-up stage, in which the low rank embedding of local patches in field of view of a corresponding patch in upper level are merged on a Grassmann manifold. This summarized information provides two key information for the corresponding patch on the upper level: cannot-links and recommended-links. This information is employed for computing a self-expressive representation of each patch at upper levels using a weighted sparse group lasso optimization problem. Numerical results on several real data sets confirm the efficiency of our approach

    Deep Clustering With Intra-class Distance Constraint for Hyperspectral Images

    Full text link
    The high dimensionality of hyperspectral images often results in the degradation of clustering performance. Due to the powerful ability of deep feature extraction and non-linear feature representation, the clustering algorithm based on deep learning has become a hot research topic in the field of hyperspectral remote sensing. However, most deep clustering algorithms for hyperspectral images utilize deep neural networks as feature extractor without considering prior knowledge constraints that are suitable for clustering. To solve this problem, we propose an intra-class distance constrained deep clustering algorithm for high-dimensional hyperspectral images. The proposed algorithm constrains the feature mapping procedure of the auto-encoder network by intra-class distance so that raw images are transformed from the original high-dimensional space to the low-dimensional feature space that is more conducive to clustering. Furthermore, the related learning process is treated as a joint optimization problem of deep feature extraction and clustering. Experimental results demonstrate the intense competitiveness of the proposed algorithm in comparison with state-of-the-art clustering methods of hyperspectral images

    Deep Comprehensive Correlation Mining for Image Clustering

    Full text link
    Recent developed deep unsupervised methods allow us to jointly learn representation and cluster unlabelled data. These deep clustering methods mainly focus on the correlation among samples, e.g., selecting high precision pairs to gradually tune the feature representation, which neglects other useful correlations. In this paper, we propose a novel clustering framework, named deep comprehensive correlation mining(DCCM), for exploring and taking full advantage of various kinds of correlations behind the unlabeled data from three aspects: 1) Instead of only using pair-wise information, pseudo-label supervision is proposed to investigate category information and learn discriminative features. 2) The features' robustness to image transformation of input space is fully explored, which benefits the network learning and significantly improves the performance. 3) The triplet mutual information among features is presented for clustering problem to lift the recently discovered instance-level deep mutual information to a triplet-level formation, which further helps to learn more discriminative features. Extensive experiments on several challenging datasets show that our method achieves good performance, e.g., attaining 62.3%62.3\% clustering accuracy on CIFAR-10, which is 10.1%10.1\% higher than the state-of-the-art results.Comment: Accepted to ICCV 201

    Local Deep-Feature Alignment for Unsupervised Dimension Reduction

    Full text link
    This paper presents an unsupervised deep-learning framework named Local Deep-Feature Alignment (LDFA) for dimension reduction. We construct neighbourhood for each data sample and learn a local Stacked Contractive Auto-encoder (SCAE) from the neighbourhood to extract the local deep features. Next, we exploit an affine transformation to align the local deep features of each neighbourhood with the global features. Moreover, we derive an approach from LDFA to map explicitly a new data sample into the learned low-dimensional subspace. The advantage of the LDFA method is that it learns both local and global characteristics of the data sample set: the local SCAEs capture local characteristics contained in the data set, while the global alignment procedures encode the interdependencies between neighbourhoods into the final low-dimensional feature representations. Experimental results on data visualization, clustering and classification show that the LDFA method is competitive with several well-known dimension reduction techniques, and exploiting locality in deep learning is a research topic worth further exploring

    Moving Object Segmentation in Jittery Videos by Stabilizing Trajectories Modeled in Kendall's Shape Space

    Full text link
    Moving Object Segmentation is a challenging task for jittery/wobbly videos. For jittery videos, the non-smooth camera motion makes discrimination between foreground objects and background layers hard to solve. While most recent works for moving video object segmentation fail in this scenario, our method generates an accurate segmentation of a single moving object. The proposed method performs a sparse segmentation, where frame-wise labels are assigned only to trajectory coordinates, followed by the pixel-wise labeling of frames. The sparse segmentation involving stabilization and clustering of trajectories in a 3-stage iterative process. At the 1st stage, the trajectories are clustered using pairwise Procrustes distance as a cue for creating an affinity matrix. The 2nd stage performs a block-wise Procrustes analysis of the trajectories and estimates Frechet means (in Kendall's shape space) of the clusters. The Frechet means represent the average trajectories of the motion clusters. An optimization function has been formulated to stabilize the Frechet means, yielding stabilized trajectories at the 3rd stage. The accuracy of the motion clusters are iteratively refined, producing distinct groups of stabilized trajectories. Next, the labels obtained from the sparse segmentation are propagated for pixel-wise labeling of the frames, using a GraphCut based energy formulation. Use of Procrustes analysis and energy minimization in Kendall's shape space for moving object segmentation in jittery videos, is the novelty of this work. Second contribution comes from experiments performed on a dataset formed of 20 real-world natural jittery videos, with manually annotated ground truth. Experiments are done with controlled levels of artificial jitter on videos of SegTrack2 dataset. Qualitative and quantitative results indicate the superiority of the proposed method.Comment: 13 pages, 3 figures, Published in British Machine Vision Conference 2017 (BMVC-2017

    Towards combinatorial clustering: preliminary research survey

    Full text link
    The paper describes clustering problems from the combinatorial viewpoint. A brief systemic survey is presented including the following: (i) basic clustering problems (e.g., classification, clustering, sorting, clustering with an order over cluster), (ii) basic approaches to assessment of objects and object proximities (i.e., scales, comparison, aggregation issues), (iii) basic approaches to evaluation of local quality characteristics for clusters and total quality characteristics for clustering solutions, (iv) clustering as multicriteria optimization problem, (v) generalized modular clustering framework, (vi) basic clustering models/methods (e.g., hierarchical clustering, k-means clustering, minimum spanning tree based clustering, clustering as assignment, detection of clisue/quasi-clique based clustering, correlation clustering, network communities based clustering), Special attention is targeted to formulation of clustering as multicriteria optimization models. Combinatorial optimization models are used as auxiliary problems (e.g., assignment, partitioning, knapsack problem, multiple choice problem, morphological clique problem, searching for consensus/median for structures). Numerical examples illustrate problem formulations, solving methods, and applications. The material can be used as follows: (a) a research survey, (b) a fundamental for designing the structure/architecture of composite modular clustering software, (c) a bibliography reference collection, and (d) a tutorial.Comment: 102 pages, 66 figures, 67 table

    Learning From Hidden Traits: Joint Factor Analysis and Latent Clustering

    Full text link
    Dimensionality reduction techniques play an essential role in data analytics, signal processing and machine learning. Dimensionality reduction is usually performed in a preprocessing stage that is separate from subsequent data analysis, such as clustering or classification. Finding reduced-dimension representations that are well-suited for the intended task is more appealing. This paper proposes a joint factor analysis and latent clustering framework, which aims at learning cluster-aware low-dimensional representations of matrix and tensor data. The proposed approach leverages matrix and tensor factorization models that produce essentially unique latent representations of the data to unravel latent cluster structure -- which is otherwise obscured because of the freedom to apply an oblique transformation in latent space. At the same time, latent cluster structure is used as prior information to enhance the performance of factorization. Specific contributions include several custom-built problem formulations, corresponding algorithms, and discussion of associated convergence properties. Besides extensive simulations, real-world datasets such as Reuters document data and MNIST image data are also employed to showcase the effectiveness of the proposed approaches

    Spectral Clustering via Ensemble Deep Autoencoder Learning (SC-EDAE)

    Full text link
    Recently, a number of works have studied clustering strategies that combine classical clustering algorithms and deep learning methods. These approaches follow either a sequential way, where a deep representation is learned using a deep autoencoder before obtaining clusters with k-means, or a simultaneous way, where deep representation and clusters are learned jointly by optimizing a single objective function. Both strategies improve clustering performance, however the robustness of these approaches is impeded by several deep autoencoder setting issues, among which the weights initialization, the width and number of layers or the number of epochs. To alleviate the impact of such hyperparameters setting on the clustering performance, we propose a new model which combines the spectral clustering and deep autoencoder strengths in an ensemble learning framework. Extensive experiments on various benchmark datasets demonstrate the potential and robustness of our approach compared to state-of-the-art deep clustering methods.Comment: Revised manuscrip

    Coarse-to-Fine Classification via Parametric and Nonparametric Models for Computer-Aided Diagnosis

    Full text link
    Classification is one of the core problems in Computer-Aided Diagnosis (CAD), targeting for early cancer detection using 3D medical imaging interpretation. High detection sensitivity with desirably low false positive (FP) rate is critical for a CAD system to be accepted as a valuable or even indispensable tool in radiologists' workflow. Given various spurious imagery noises which cause observation uncertainties, this remains a very challenging task. In this paper, we propose a novel, two-tiered coarse-to-fine (CTF) classification cascade framework to tackle this problem. We first obtain classification-critical data samples (e.g., samples on the decision boundary) extracted from the holistic data distributions using a robust parametric model (e.g., \cite{Raykar08}); then we build a graph-embedding based nonparametric classifier on sampled data, which can more accurately preserve or formulate the complex classification boundary. These two steps can also be considered as effective "sample pruning" and "feature pursuing + kkNN/template matching", respectively. Our approach is validated comprehensively in colorectal polyp detection and lung nodule detection CAD systems, as the top two deadly cancers, using hospital scale, multi-site clinical datasets. The results show that our method achieves overall better classification/detection performance than existing state-of-the-art algorithms using single-layer classifiers, such as the support vector machine variants \cite{Wang08}, boosting \cite{Slabaugh10}, logistic regression \cite{Ravesteijn10}, relevance vector machine \cite{Raykar08}, kk-nearest neighbor \cite{Murphy09} or spectral projections on graph \cite{Cai08}

    Multi-View Surveillance Video Summarization via Joint Embedding and Sparse Optimization

    Full text link
    Most traditional video summarization methods are designed to generate effective summaries for single-view videos, and thus they cannot fully exploit the complicated intra and inter-view correlations in summarizing multi-view videos in a camera network. In this paper, with the aim of summarizing multi-view videos, we introduce a novel unsupervised framework via joint embedding and sparse representative selection. The objective function is two-fold. The first is to capture the multi-view correlations via an embedding, which helps in extracting a diverse set of representatives. The second is to use a `2;1- norm to model the sparsity while selecting representative shots for the summary. We propose to jointly optimize both of the objectives, such that embedding can not only characterize the correlations, but also indicate the requirements of sparse representative selection. We present an efficient alternating algorithm based on half-quadratic minimization to solve the proposed non-smooth and non-convex objective with convergence analysis. A key advantage of the proposed approach with respect to the state-of-the-art is that it can summarize multi-view videos without assuming any prior correspondences/alignment between them, e.g., uncalibrated camera networks. Rigorous experiments on several multi-view datasets demonstrate that our approach clearly outperforms the state-of-the-art methods.Comment: IEEE Trans. on Multimedia, 2017 (In Press
    • …
    corecore