6 research outputs found

    Evaluation of Highway-pilot Function Based on FMEA Safety Analysis

    Get PDF
    Cybersecurity is becoming more and more relevant. Autonomous vehicles handle large amounts of data and can connect to more and more existing devices, smartphones, tablets, or even other cars and systems. This poses the risk of unauthorized access to data. Theoretically cars have separate computer units, operate in isolation, and are not connected, so there is less possibility to be attacked. However if the vehicles are interconnected, hackers can have easier access to personal data. They can get information about the location of the car owner, their typical trips, and, for example, allow an intruder to know when the tracked person is not at home. Furthermore it can also be happened that the vehicle operation is maliciously disturbed, which can result in a security risk for the passengers. In extreme cases, computer terrorist attacks can also be prepared - large-scale interventions on roads can lead to chaos across a region or country. In accordance with the introduced threats, it is a crucial objective of this research to indicate specific methods, which can help the industry to evaluate and prepare for these kinds of attacks in a proper way

    REMIND: A Framework for the Resilient Design of Automotive Systems

    Get PDF
    In the past years, great effort has been spent on enhancing the security and safety of vehicular systems. Current advances in information and communication technology have increased the complexity of these systems and lead to extended functionalities towards self-driving and more connectivity. Unfortunately, these advances open the door for diverse and newly emerging attacks that hamper the security and, thus, the safety of vehicular systems. In this paper, we contribute to supporting the design of resilient automotive systems. We review and analyze scientific literature on resilience techniques, fault tolerance, and dependability. As a result, we present the REMIND resilience framework providing techniques for attack detection, mitigation, recovery, and resilience endurance. Moreover, we provide guidelines on how the REMIND framework can be used against common security threats and attacks and further discuss the trade-offs when applying these guidelines

    A risk assessment of two automobile repair centres: A Nigerian case study

    Get PDF
    We do not understand the hazards and risks faced by auto-mechanics despite knowledge of their growing service responsibilities in recent years, coupled with the very hazardous work environment in which they operate. In this article, as a prospective antidote to this deficiency, an inventory of possible risks to which the workers of an automobile repair centre may be exposed, is created. Measures that should be taken to minimise these risks are proffered. The risks faced by automobile mechanics were investigated using two case studies of small and medium scale enterprises in a developing country. The study employed both quantitative and qualitative assessment methods. This approach used interviews and questionnaire approach for the qualitative method while a projected monetary approach was employed for the quantitative method. A major finding was that over-exertion ranked as the highest risk for all the workers combined. The result was corroborated by findings of the National Safety Council and will be of immense value to workshop managers in developing the most effective risk control practices at their centres

    Optimising a defence-aware threat modelling diagram incorporating a defence-in-depth approach for the internet-of-things

    Get PDF
    Modern technology has proliferated into just about every aspect of life while improving the quality of life. For instance, IoT technology has significantly improved over traditional systems, providing easy life, time-saving, financial saving, and security aspects. However, security weaknesses associated with IoT technology can pose a significant threat to the human factor. For instance, smart doorbells can make household life easier, save time, save money, and provide surveillance security. Nevertheless, the security weaknesses in smart doorbells could be exposed to a criminal and pose a danger to the life and money of the household. In addition, IoT technology is constantly advancing and expanding and rapidly becoming ubiquitous in modern society. In that case, increased usage and technological advancement create security weaknesses that attract cybercriminals looking to satisfy their agendas. Perfect security solutions do not exist in the real world because modern systems are continuously improving, and intruders frequently attempt various techniques to discover security flaws and bypass existing security control in modern systems. In that case, threat modelling is a great starting point in understanding the threat landscape of the system and its weaknesses. Therefore, the threat modelling field in computer science was significantly improved by implementing various frameworks to identify threats and address them to mitigate them. However, most mature threat modelling frameworks are implemented for traditional IT systems that only consider software-related weaknesses and do not address the physical attributes. This approach may not be practical for IoT technology because it inherits software and physical security weaknesses. However, scholars employed mature threat modelling frameworks such as STRIDE on IoT technology because mature frameworks still include security concepts that are significant for modern technology. Therefore, mature frameworks cannot be ignored but are not efficient in addressing the threat associated with modern systems. As a solution, this research study aims to extract the significant security concept of matured threat modelling frameworks and utilise them to implement robust IoT threat modelling frameworks. This study selected fifteen threat modelling frameworks from among researchers and the defence-in-depth security concept to extract threat modelling techniques. Subsequently, this research study conducted three independent reviews to discover valuable threat modelling concepts and their usefulness for IoT technology. The first study deduced that integration of threat modelling approach software-centric, asset-centric, attacker-centric and data-centric with defence-in-depth is valuable and delivers distinct benefits. As a result, PASTA and TRIKE demonstrated four threat modelling approaches based on a classification scheme. The second study deduced the features of a threat modelling framework that achieves a high satisfaction level toward defence-in-depth security architecture. Under evaluation criteria, the PASTA framework scored the highest satisfaction value. Finally, the third study deduced IoT systematic threat modelling techniques based on recent research studies. As a result, the STRIDE framework was identified as the most popular framework, and other frameworks demonstrated effective capabilities valuable to IoT technology. Respectively, this study introduced Defence-aware Threat Modelling (DATM), an IoT threat modelling framework based on the findings of threat modelling and defence-in-depth security concepts. The steps involved with the DATM framework are further described with figures for better understatement. Subsequently, a smart doorbell case study is considered for threat modelling using the DATM framework for validation. Furthermore, the outcome of the case study was further assessed with the findings of three research studies and validated the DATM framework. Moreover, the outcome of this thesis is helpful for researchers who want to conduct threat modelling in IoT environments and design a novel threat modelling framework suitable for IoT technology

    Artificial Intelligence and Cybersecurity: Building an Automotive Cybersecurity Framework Using Machine Learning Algorithms

    Full text link
    Automotive technology has continued to advance in many aspects. As an outcome of such advancements, autonomous vehicles are closer to commercialization and have brought to life a complex automotive technology ecosystem [1]. Like every other technology, these developments bring benefits but also introduce a variety of risks. One of these risks in the automotive space is cybersecurity threats. In the case of cars, these security challenges can produce devastating results and tremendous costs, including loss of life. Therefore, conducting a clear analysis, assessment and detection of threats solves some of the cybersecurity challenges in the automotive ecosystem. This dissertation does just that, by building a three-step framework to analyze, assess,and detect threats using machine learning algorithms. First, it does an analysis of the connected vehicle threats while leveraging the STRIDE framework [2]. Second, it presents an innovative, Fuzzy based threat assessment model (FTAM). FTAM leverages threat characterizations from established threat assessment models while focusing on improving its assessment capabilities by using Fuzzy logic. Through this methodology, FTAM can improve the efficiency and accuracy of the threat assessment process by using Fuzzy logic to determine the “degree” of the threat over other existing methods. This differs from the current threat assessment models which use subjective assessment processes based on table look-ups or scoring. Thirdly, this dissertation proposes an intrusion detection system (IDS) to detect malicious threats while taking in consideration results from the previous assessment stage. This IDS uses the dataset provided from Wyoming Connected Vehicle Deployment program [3] and consists of a two-stage intrusion detection system based on supervised and unsupervised machine learning algorithms. The first stage uses unsupervised learning to detect whether there is an attack present and the second stage classifies these attacks in a supervised learning fashion. The second stage also addresses data bias and eliminates the number of false positives. The simulation of this approach results in an IDS able to detect and classify attacks at a 99.965% accuracy and lowers the false positives rate to 0%.Ph.D.College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttps://deepblue.lib.umich.edu/bitstream/2027.42/149467/1/Nevrus Kaja PhD Dissertation V24.pdfDescription of Nevrus Kaja PhD Dissertation V24.pdf : Dissertatio

    Threat and Risk Assessment Methodologies in the Automotive Domain

    No full text
    corecore