92 research outputs found

    Imitation from Observation: Learning to Imitate Behaviors from Raw Video via Context Translation

    Full text link
    Imitation learning is an effective approach for autonomous systems to acquire control policies when an explicit reward function is unavailable, using supervision provided as demonstrations from an expert, typically a human operator. However, standard imitation learning methods assume that the agent receives examples of observation-action tuples that could be provided, for instance, to a supervised learning algorithm. This stands in contrast to how humans and animals imitate: we observe another person performing some behavior and then figure out which actions will realize that behavior, compensating for changes in viewpoint, surroundings, object positions and types, and other factors. We term this kind of imitation learning "imitation-from-observation," and propose an imitation learning method based on video prediction with context translation and deep reinforcement learning. This lifts the assumption in imitation learning that the demonstration should consist of observations in the same environment configuration, and enables a variety of interesting applications, including learning robotic skills that involve tool use simply by observing videos of human tool use. Our experimental results show the effectiveness of our approach in learning a wide range of real-world robotic tasks modeled after common household chores from videos of a human demonstrator, including sweeping, ladling almonds, pushing objects as well as a number of tasks in simulation.Comment: Accepted at ICRA 2018, Brisbane. YuXuan Liu and Abhishek Gupta had equal contributio

    Efficient Supervision for Robot Learning via Imitation, Simulation, and Adaptation

    Full text link
    Recent successes in machine learning have led to a shift in the design of autonomous systems, improving performance on existing tasks and rendering new applications possible. Data-focused approaches gain relevance across diverse, intricate applications when developing data collection and curation pipelines becomes more effective than manual behaviour design. The following work aims at increasing the efficiency of this pipeline in two principal ways: by utilising more powerful sources of informative data and by extracting additional information from existing data. In particular, we target three orthogonal fronts: imitation learning, domain adaptation, and transfer from simulation.Comment: Dissertation Summar

    Mutual Alignment Transfer Learning

    Full text link
    Training robots for operation in the real world is a complex, time consuming and potentially expensive task. Despite significant success of reinforcement learning in games and simulations, research in real robot applications has not been able to match similar progress. While sample complexity can be reduced by training policies in simulation, such policies can perform sub-optimally on the real platform given imperfect calibration of model dynamics. We present an approach -- supplemental to fine tuning on the real robot -- to further benefit from parallel access to a simulator during training and reduce sample requirements on the real robot. The developed approach harnesses auxiliary rewards to guide the exploration for the real world agent based on the proficiency of the agent in simulation and vice versa. In this context, we demonstrate empirically that the reciprocal alignment for both agents provides further benefit as the agent in simulation can adjust to optimize its behaviour for states commonly visited by the real-world agent
    • …
    corecore