5,599 research outputs found
Thermodynamics of water modeled using ab initio simulations
We regularize the potential distribution framework to calculate the excess
free energy of liquid water simulated with the BLYP-D density functional. The
calculated free energy is in fair agreement with experiments but the excess
internal energy and hence also the excess entropy are not. Our work emphasizes
the importance of thermodynamic characterization in assessing the quality of
electron density functionals in describing liquid water and hydration
phenomena
Ab initio RNA folding
RNA molecules are essential cellular machines performing a wide variety of
functions for which a specific three-dimensional structure is required. Over
the last several years, experimental determination of RNA structures through
X-ray crystallography and NMR seems to have reached a plateau in the number of
structures resolved each year, but as more and more RNA sequences are being
discovered, need for structure prediction tools to complement experimental data
is strong. Theoretical approaches to RNA folding have been developed since the
late nineties when the first algorithms for secondary structure prediction
appeared. Over the last 10 years a number of prediction methods for 3D
structures have been developed, first based on bioinformatics and data-mining,
and more recently based on a coarse-grained physical representation of the
systems. In this review we are going to present the challenges of RNA structure
prediction and the main ideas behind bioinformatic approaches and physics-based
approaches. We will focus on the description of the more recent physics-based
phenomenological models and on how they are built to include the specificity of
the interactions of RNA bases, whose role is critical in folding. Through
examples from different models, we will point out the strengths of
physics-based approaches, which are able not only to predict equilibrium
structures, but also to investigate dynamical and thermodynamical behavior, and
the open challenges to include more key interactions ruling RNA folding.Comment: 28 pages, 18 figure
Microscopic dynamics of charge separation at the aqueous electrochemical interface
We have used molecular simulation and methods of importance sampling to study
the thermodynamics and kinetics of ionic charge separation at a liquid
water-metal interface. We have considered this process using canonical examples
of two different classes of ions: a simple alkali-halide pair, NaI, or
classical ions, and the products of water autoionization, HOOH, or
water ions. We find that for both ion classes, the microscopic mechanism of
charge separation, including water's collective role in the process, is
conserved between the bulk liquid and the electrode interface. Despite this,
the thermodynamic and kinetic details of the process differ between these two
environments in a way that depends on ion type. In the case of the classical
ion pairs, a higher free energy barrier to charge separation and a smaller flux
over that barrier at the interface, results in a rate of dissociation that is
40x slower relative to the bulk. For water ions, a slightly higher free energy
barrier is offset by a higher flux over the barrier from longer lived hydrogen
bonding patters at the interface, resulting in a rate of association that is
similar both at and away from the interface. We find that these differences in
rates and stabilities of charge separation are due to the altered ability of
water to solvate and reorganize in the vicinity of the metal interface.Comment: 6 pages, 3 figures + S
Simulation and Theory of Ions at Atmospherically Relevant Aqueous Liquid-Air Interfaces
Chemistry occurring at or near the surfaces of aqueous droplets and thin
films in the atmosphere influences air quality and climate. Molecular dynamics
simulations are becoming increasingly useful for gaining atomic-scale insight
into the structure and reactivity of aqueous interfaces in the atmosphere. Here
we review simulation studies of atmospherically relevant aqueous liquid-air
interfaces, with an emphasis on ions that play important roles in the chemistry
of atmospheric aerosols. In addition to surveying results from simulation
studies, we discuss challenges to the refinement and experimental validation of
the methodology for simulating ion adsorption to the air-water interface, and
recent advances in elucidating the driving forces for adsorption. We also
review the recent development of a dielectric continuum theory that is capable
of reproducing simulation and experimental data on ion behavior at aqueous
interfaces
How Water's Properties Are Encoded in Its Molecular Structure and Energies.
How are water's material properties encoded within the structure of the water molecule? This is pertinent to understanding Earth's living systems, its materials, its geochemistry and geophysics, and a broad spectrum of its industrial chemistry. Water has distinctive liquid and solid properties: It is highly cohesive. It has volumetric anomalies-water's solid (ice) floats on its liquid; pressure can melt the solid rather than freezing the liquid; heating can shrink the liquid. It has more solid phases than other materials. Its supercooled liquid has divergent thermodynamic response functions. Its glassy state is neither fragile nor strong. Its component ions-hydroxide and protons-diffuse much faster than other ions. Aqueous solvation of ions or oils entails large entropies and heat capacities. We review how these properties are encoded within water's molecular structure and energies, as understood from theories, simulations, and experiments. Like simpler liquids, water molecules are nearly spherical and interact with each other through van der Waals forces. Unlike simpler liquids, water's orientation-dependent hydrogen bonding leads to open tetrahedral cage-like structuring that contributes to its remarkable volumetric and thermal properties
Ideal, Defective, and Gold--Promoted Rutile TiO2(110) Surfaces: Structures, Energies, Dynamics, and Thermodynamics from PBE+U
Extensive first principles calculations are carried out to investigate
gold-promoted TiO2(110) surfaces in terms of structure optimizations,
electronic structure analyses, ab initio thermodynamics calculations of surface
phase diagrams, and ab initio molecular dynamics simulations. All computations
rely on density functional theory in the generalized gradient approximation
(PBE) and account for on-site Coulomb interactions via inclusion of a Hubbard
correction, PBE+U, where U is computed from linear response theory. This
approach is validated by investigating the interaction between TiO2(110)
surfaces and typical probe species (H, H2O, CO). Relaxed structures and binding
energies are compared to both data from the literature and plain PBE results.
The main focus of the study is on the properties of gold-promoted titania
surfaces and their interactions with CO. Both PBE+U and PBE optimized
structures of Au adatoms adsorbed on stoichiometric and reduced TiO2 surfaces
are computed, along with their electronic structure. The charge rearrangement
induced by the adsorbates at the metal/oxide contact are also analyzed and
discussed. By performing PBE+U ab initio molecular dynamics simulations, it is
demonstrated that the diffusion of Au adatoms on the stoichiometric surface is
highly anisotropic. The metal atoms migrate either along the top of the
bridging oxygen rows, or around the area between these rows, from one bridging
position to the next along the [001] direction. Approximate ab initio
thermodynamics predicts that under O-rich conditions, structures obtained by
substituting a Ti5c atom with an Au atom are thermodynamically stable over a
wide range of temperatures and pressures.Comment: 20 pages, 12 figures, accepted for publication in Phys. Rev.
On the Impact of Solvation on a Au/TiO2 Nanocatalyst in Contact with Water
Water, the ubiquitous solvent, is also prominent in forming liquid solid
interfaces with catalytically active surfaces, in particular with promoted
oxides. We study the complex interface of a gold nanocatalyst, pinned by an F
center on titania support, and water. The ab initio simulations uncover the
microscopic details of solvent-induced charge rearrangements at the metal
particle. Water is found to stabilize charge states differently from the gas
phase as a result of structure specific charge transfer from to the solvent,
thus altering surface reactivity. The metal cluster is shown to feature both
cationic and anionic solvation, depending on fluctuation and polarization
effects in the liquid, which creates novel active sites. These observations
open up an avenue toward solvent engineering in liquid-phase heterogeneous
catalysis
Hydrogen and vacancy clustering in zirconium
The effect of solute hydrogen on the stability of vacancy clusters in
hexagonal closed packed zirconium is investigated with an ab initio approach,
including contributions of H vibrations. Atomistic simulations within the
density functional theory evidence a strong binding of H to small vacancy
clusters. The hydrogen effect on large vacancy loops is modeled through its
interaction with the stacking faults. A thermodynamic modeling of H segregation
on the various faults, relying on ab initio binding energies, shows that these
faults are enriched in H, leading to a decrease of the stacking fault energies.
This is consistent with the trapping of H by vacancy loops observed
experimentally. The stronger trapping, and thus the stronger stabilization, is
obtained for vacancy loops lying in the basal planes, i.e. the loops
responsible for the breakaway growth observed under high irradiation dose.Comment: submitte
Molecular modeling for physical property prediction
Multiscale modeling is becoming the standard approach for process study in a broader framework that promotes computer aided integrated product and process design. In addition to usual purity requirements, end products must meet new constraints in terms of environmental impact, safety of goods and people, specific properties. This chapter adresses the use of molecular modeling tools for the prediction of physical property usefull for chemical engineering practice
- …
