1,816,799 research outputs found
Cornerstones of Sampling of Operator Theory
This paper reviews some results on the identifiability of classes of
operators whose Kohn-Nirenberg symbols are band-limited (called band-limited
operators), which we refer to as sampling of operators. We trace the motivation
and history of the subject back to the original work of the third-named author
in the late 1950s and early 1960s, and to the innovations in spread-spectrum
communications that preceded that work. We give a brief overview of the NOMAC
(Noise Modulation and Correlation) and Rake receivers, which were early
implementations of spread-spectrum multi-path wireless communication systems.
We examine in detail the original proof of the third-named author
characterizing identifiability of channels in terms of the maximum time and
Doppler spread of the channel, and do the same for the subsequent
generalization of that work by Bello.
The mathematical limitations inherent in the proofs of Bello and the third
author are removed by using mathematical tools unavailable at the time. We
survey more recent advances in sampling of operators and discuss the
implications of the use of periodically-weighted delta-trains as identifiers
for operator classes that satisfy Bello's criterion for identifiability,
leading to new insights into the theory of finite-dimensional Gabor systems. We
present novel results on operator sampling in higher dimensions, and review
implications and generalizations of the results to stochastic operators, MIMO
systems, and operators with unknown spreading domains
A Covariant Information-Density Cutoff in Curved Space-Time
In information theory, the link between continuous information and discrete
information is established through well-known sampling theorems. Sampling
theory explains, for example, how frequency-filtered music signals are
reconstructible perfectly from discrete samples. In this Letter, sampling
theory is generalized to pseudo-Riemannian manifolds. This provides a new set
of mathematical tools for the study of space-time at the Planck scale: theories
formulated on a differentiable space-time manifold can be completely equivalent
to lattice theories. There is a close connection to generalized uncertainty
relations which have appeared in string theory and other studies of quantum
gravity.Comment: 4 pages, RevTe
Sampling local properties of attractors via Extreme Value Theory
We provide formulas to compute the coefficients entering the affine scaling
needed to get a non-degenerate function for the asymptotic distribution of the
maxima of some kind of observable computed along the orbit of a randomly
perturbed dynamical system. This will give information on the local geometrical
properties of the stationary measure. We will consider systems perturbed with
additive noise and with observational noise. Moreover we will apply our
techniques to chaotic systems and to contractive systems, showing that both
share the same qualitative behavior when perturbed
Sampling of operators
Sampling and reconstruction of functions is a central tool in science. A key
result is given by the sampling theorem for bandlimited functions attributed to
Whittaker, Shannon, Nyquist, and Kotelnikov. We develop an analogous sampling
theory for operators which we call bandlimited if their Kohn-Nirenberg symbols
are bandlimited. We prove sampling theorems for such operators and show that
they are extensions of the classical sampling theorem
From Theory to Practice: Sub-Nyquist Sampling of Sparse Wideband Analog Signals
Conventional sub-Nyquist sampling methods for analog signals exploit prior
information about the spectral support. In this paper, we consider the
challenging problem of blind sub-Nyquist sampling of multiband signals, whose
unknown frequency support occupies only a small portion of a wide spectrum. Our
primary design goals are efficient hardware implementation and low
computational load on the supporting digital processing. We propose a system,
named the modulated wideband converter, which first multiplies the analog
signal by a bank of periodic waveforms. The product is then lowpass filtered
and sampled uniformly at a low rate, which is orders of magnitude smaller than
Nyquist. Perfect recovery from the proposed samples is achieved under certain
necessary and sufficient conditions. We also develop a digital architecture,
which allows either reconstruction of the analog input, or processing of any
band of interest at a low rate, that is, without interpolating to the high
Nyquist rate. Numerical simulations demonstrate many engineering aspects:
robustness to noise and mismodeling, potential hardware simplifications,
realtime performance for signals with time-varying support and stability to
quantization effects. We compare our system with two previous approaches:
periodic nonuniform sampling, which is bandwidth limited by existing hardware
devices, and the random demodulator, which is restricted to discrete multitone
signals and has a high computational load. In the broader context of Nyquist
sampling, our scheme has the potential to break through the bandwidth barrier
of state-of-the-art analog conversion technologies such as interleaved
converters.Comment: 17 pages, 12 figures, to appear in IEEE Journal of Selected Topics in
Signal Processing, the special issue on Compressed Sensin
- …
