19 research outputs found

    An Exponential Lower Bound for the Runtime of the cGA on Jump Functions

    Full text link
    In the first runtime analysis of an estimation-of-distribution algorithm (EDA) on the multi-modal jump function class, Hasen\"ohrl and Sutton (GECCO 2018) proved that the runtime of the compact genetic algorithm with suitable parameter choice on jump functions with high probability is at most polynomial (in the dimension) if the jump size is at most logarithmic (in the dimension), and is at most exponential in the jump size if the jump size is super-logarithmic. The exponential runtime guarantee was achieved with a hypothetical population size that is also exponential in the jump size. Consequently, this setting cannot lead to a better runtime. In this work, we show that any choice of the hypothetical population size leads to a runtime that, with high probability, is at least exponential in the jump size. This result might be the first non-trivial exponential lower bound for EDAs that holds for arbitrary parameter settings.Comment: To appear in the Proceedings of FOGA 2019. arXiv admin note: text overlap with arXiv:1903.1098

    A Simplified Run Time Analysis of the Univariate Marginal Distribution Algorithm on LeadingOnes

    Full text link
    With elementary means, we prove a stronger run time guarantee for the univariate marginal distribution algorithm (UMDA) optimizing the LeadingOnes benchmark function in the desirable regime with low genetic drift. If the population size is at least quasilinear, then, with high probability, the UMDA samples the optimum within a number of iterations that is linear in the problem size divided by the logarithm of the UMDA's selection rate. This improves over the previous guarantee, obtained by Dang and Lehre (2015) via the deep level-based population method, both in terms of the run time and by demonstrating further run time gains from small selection rates. With similar arguments as in our upper-bound analysis, we also obtain the first lower bound for this problem. Under similar assumptions, we prove that a bound that matches our upper bound up to constant factors holds with high probability

    Sharp Bounds for Genetic Drift in EDAs

    Full text link
    Estimation of Distribution Algorithms (EDAs) are one branch of Evolutionary Algorithms (EAs) in the broad sense that they evolve a probabilistic model instead of a population. Many existing algorithms fall into this category. Analogous to genetic drift in EAs, EDAs also encounter the phenomenon that updates of the probabilistic model not justified by the fitness move the sampling frequencies to the boundary values. This can result in a considerable performance loss. This paper proves the first sharp estimates of the boundary hitting time of the sampling frequency of a neutral bit for several univariate EDAs. For the UMDA that selects μ\mu best individuals from λ\lambda offspring each generation, we prove that the expected first iteration when the frequency of the neutral bit leaves the middle range [14,34][\tfrac 14, \tfrac 34] and the expected first time it is absorbed in 0 or 1 are both Θ(μ)\Theta(\mu). The corresponding hitting times are Θ(K2)\Theta(K^2) for the cGA with hypothetical population size KK. This paper further proves that for PBIL with parameters μ\mu, λ\lambda, and ρ\rho, in an expected number of Θ(μ/ρ2)\Theta(\mu/\rho^2) iterations the sampling frequency of a neutral bit leaves the interval [Θ(ρ/μ),1Θ(ρ/μ)][\Theta(\rho/\mu),1-\Theta(\rho/\mu)] and then always the same value is sampled for this bit, that is, the frequency approaches the corresponding boundary value with maximum speed. For the lower bounds implicit in these statements, we also show exponential tail bounds. If a bit is not neutral, but neutral or has a preference for ones, then the lower bounds on the times to reach a low frequency value still hold. An analogous statement holds for bits that are neutral or prefer the value zero

    From Understanding Genetic Drift to a Smart-Restart Parameter-less Compact Genetic Algorithm

    Full text link
    One of the key difficulties in using estimation-of-distribution algorithms is choosing the population size(s) appropriately: Too small values lead to genetic drift, which can cause enormous difficulties. In the regime with no genetic drift, however, often the runtime is roughly proportional to the population size, which renders large population sizes inefficient. Based on a recent quantitative analysis which population sizes lead to genetic drift, we propose a parameter-less version of the compact genetic algorithm that automatically finds a suitable population size without spending too much time in situations unfavorable due to genetic drift. We prove a mathematical runtime guarantee for this algorithm and conduct an extensive experimental analysis on four classic benchmark problems both without and with additive centered Gaussian posterior noise. The former shows that under a natural assumption, our algorithm has a performance very similar to the one obtainable from the best problem-specific population size. The latter confirms that missing the right population size in the original cGA can be detrimental and that previous theory-based suggestions for the population size can be far away from the right values; it also shows that our algorithm as well as a previously proposed parameter-less variant of the cGA based on parallel runs avoid such pitfalls. Comparing the two parameter-less approaches, ours profits from its ability to abort runs which are likely to be stuck in a genetic drift situation.Comment: 4 figures. Extended version of a paper appearing at GECCO 202

    The Univariate Marginal Distribution Algorithm Copes Well With Deception and Epistasis

    Full text link
    In their recent work, Lehre and Nguyen (FOGA 2019) show that the univariate marginal distribution algorithm (UMDA) needs time exponential in the parent populations size to optimize the DeceptiveLeadingBlocks (DLB) problem. They conclude from this result that univariate EDAs have difficulties with deception and epistasis. In this work, we show that this negative finding is caused by an unfortunate choice of the parameters of the UMDA. When the population sizes are chosen large enough to prevent genetic drift, then the UMDA optimizes the DLB problem with high probability with at most λ(n2+2elnn)\lambda(\frac{n}{2} + 2 e \ln n) fitness evaluations. Since an offspring population size λ\lambda of order nlognn \log n can prevent genetic drift, the UMDA can solve the DLB problem with O(n2logn)O(n^2 \log n) fitness evaluations. In contrast, for classic evolutionary algorithms no better run time guarantee than O(n3)O(n^3) is known (which we prove to be tight for the (1+1){(1+1)} EA), so our result rather suggests that the UMDA can cope well with deception and epistatis. From a broader perspective, our result shows that the UMDA can cope better with local optima than evolutionary algorithms; such a result was previously known only for the compact genetic algorithm. Together with the lower bound of Lehre and Nguyen, our result for the first time rigorously proves that running EDAs in the regime with genetic drift can lead to drastic performance losses

    A Tight Runtime Analysis for the cGA on Jump Functions---EDAs Can Cross Fitness Valleys at No Extra Cost

    Full text link
    We prove that the compact genetic algorithm (cGA) with hypothetical population size μ=Ω(nlogn)poly(n)\mu = \Omega(\sqrt n \log n) \cap \text{poly}(n) with high probability finds the optimum of any nn-dimensional jump function with jump size k<120lnnk < \frac 1 {20} \ln n in O(μn)O(\mu \sqrt n) iterations. Since it is known that the cGA with high probability needs at least Ω(μn+nlogn)\Omega(\mu \sqrt n + n \log n) iterations to optimize the unimodal OneMax function, our result shows that the cGA in contrast to most classic evolutionary algorithms here is able to cross moderate-sized valleys of low fitness at no extra cost. Our runtime guarantee improves over the recent upper bound O(μn1.5logn)O(\mu n^{1.5} \log n) valid for μ=Ω(n3.5+ε)\mu = \Omega(n^{3.5+\varepsilon}) of Hasen\"ohrl and Sutton (GECCO 2018). For the best choice of the hypothetical population size, this result gives a runtime guarantee of O(n5+ε)O(n^{5+\varepsilon}), whereas ours gives O(nlogn)O(n \log n). We also provide a simple general method based on parallel runs that, under mild conditions, (i)~overcomes the need to specify a suitable population size, but gives a performance close to the one stemming from the best-possible population size, and (ii)~transforms EDAs with high-probability performance guarantees into EDAs with similar bounds on the expected runtime.Comment: 25 pages, full version of a paper to appear at GECCO 201

    Runtime analysis of the univariate marginal distribution algorithm under low selective pressure and prior noise

    Get PDF
    We perform a rigorous runtime analysis for the Univariate Marginal Distribution Algorithm on the LeadingOnes function, a well-known benchmark function in the theory community of evolutionary computation with a high correlation between decision variables. For a problem instance of size nn, the currently best known upper bound on the expected runtime is O(nλlogλ+n2)\mathcal{O}(n\lambda\log\lambda+n^2) (Dang and Lehre, GECCO 2015), while a lower bound necessary to understand how the algorithm copes with variable dependencies is still missing. Motivated by this, we show that the algorithm requires a eΩ(μ)e^{\Omega(\mu)} runtime with high probability and in expectation if the selective pressure is low; otherwise, we obtain a lower bound of Ω(nλlog(λμ))\Omega(\frac{n\lambda}{\log(\lambda-\mu)}) on the expected runtime. Furthermore, we for the first time consider the algorithm on the function under a prior noise model and obtain an O(n2)\mathcal{O}(n^2) expected runtime for the optimal parameter settings. In the end, our theoretical results are accompanied by empirical findings, not only matching with rigorous analyses but also providing new insights into the behaviour of the algorithm.Comment: To appear at GECCO 2019, Prague, Czech Republi

    Level-Based Analysis of the Univariate Marginal Distribution Algorithm

    Get PDF
    Estimation of Distribution Algorithms (EDAs) are stochastic heuristics that search for optimal solutions by learning and sampling from probabilistic models. Despite their popularity in real-world applications, there is little rigorous understanding of their performance. Even for the Univariate Marginal Distribution Algorithm (UMDA) -- a simple population-based EDA assuming independence between decision variables -- the optimisation time on the linear problem OneMax was until recently undetermined. The incomplete theoretical understanding of EDAs is mainly due to lack of appropriate analytical tools. We show that the recently developed level-based theorem for non-elitist populations combined with anti-concentration results yield upper bounds on the expected optimisation time of the UMDA. This approach results in the bound O(nλlogλ+n2)\mathcal{O}(n\lambda\log \lambda+n^2) on two problems, LeadingOnes and BinVal, for population sizes λ>μ=Ω(logn)\lambda>\mu=\Omega(\log n), where μ\mu and λ\lambda are parameters of the algorithm. We also prove that the UMDA with population sizes μO(n)Ω(logn)\mu\in \mathcal{O}(\sqrt{n}) \cap \Omega(\log n) optimises OneMax in expected time O(λn)\mathcal{O}(\lambda n), and for larger population sizes μ=Ω(nlogn)\mu=\Omega(\sqrt{n}\log n), in expected time O(λn)\mathcal{O}(\lambda\sqrt{n}). The facility and generality of our arguments suggest that this is a promising approach to derive bounds on the expected optimisation time of EDAs.Comment: To appear in Algorithmica Journa

    Language Model Crossover: Variation through Few-Shot Prompting

    Full text link
    This paper pursues the insight that language models naturally enable an intelligent variation operator similar in spirit to evolutionary crossover. In particular, language models of sufficient scale demonstrate in-context learning, i.e. they can learn from associations between a small number of input patterns to generate outputs incorporating such associations (also called few-shot prompting). This ability can be leveraged to form a simple but powerful variation operator, i.e. to prompt a language model with a few text-based genotypes (such as code, plain-text sentences, or equations), and to parse its corresponding output as those genotypes' offspring. The promise of such language model crossover (which is simple to implement and can leverage many different open-source language models) is that it enables a simple mechanism to evolve semantically-rich text representations (with few domain-specific tweaks), and naturally benefits from current progress in language models. Experiments in this paper highlight the versatility of language-model crossover, through evolving binary bit-strings, sentences, equations, text-to-image prompts, and Python code. The conclusion is that language model crossover is a promising method for evolving genomes representable as text
    corecore